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In this report, we provide information for individuals interested in using the CU-Move speech 
corpus. This in-vehicle corpus consists of the largest collection of speech data available for in-
vehicle route navigation and planning with a wide range of noise conditions and speakers from 
across the United States. This report will cover the following six areas. 
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Release 2.0B includes a number of conference and journal papers which have used the CU-Move 
corpus. We will continue to include copies of papers from other groups in order to share results 
and resources. 
 
Section 1.0:  Overview of CU-Move Corpus 
 
The goal of the University of Colorado CU-Move project is to develop algorithms and technology 
for robust access to information via spoken dialog systems in mobile, hands free environments. 
The novel aspects include the formulation of a new microphone array and multi-channel noise 
suppression front-end, corpus development for speech and acoustic vehicle conditions, 
environmental classification for changing in-vehicle noise conditions, and a back-end dialog 
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navigation information retrieval sub-system connected to the WWW. While previous attempts at 
in-vehicle speech systems have generally focused on isolated command words to set radio 
frequencies, temperature control, etc.,the CU-Move system is focused on natural conversational 
interaction between the user and in-vehicle system. Since previous studies in speech recognition 
have shown significant loses in performance when speakers are under task or emotional stress, it is 
important to develop conversational systems that minimize operator stress for the driver. System 
advances include intelligent microphone arrays, auditory and speaker based constrained speech 
enhancement methods, environmental noise characterization, and speech recognizer model 
adaptation methods for changing acoustic conditions in the car. Our initial prototype system allows 
users to get driving directions for the Boulder area via a hands free cell phone, while driving in a 
car. 
 
As part of CSLR’s commitment to advancing the state-of-the-art in conversational dialogue 
systems for in-vehicle route navigation, CSLR undertook the task of establishing and organizing a 
two phase in-vehicle collection plan (details of this plan can be found on our web site: 
http://cumove.colorado.edu/). The site contains more information on the collection plan, example 
prompts, sample audio clips, consent forms, etc. 
 
• Phase I: Acoustic Noise Data Collection and Analysis  
• Phase II: Speech & Speaker Data Collection  

o Collection plan, examples of prompts, sample audio data  
o Human Subject Consent Form  
o Human Subject Information Form  
o Complete CU-Move set of prompts : (CU-MovePrompts.zip) 

 
The CU-Move data consists of three hard disk releases: 

• Hard-Disk#1: CU-Move Release 1.1A:   {60GB disk size} 
o Documentation File [CU-Move-CorpusRel-1.1a.Jan02] 
o Minneapolis, MN: all 153 speakers collected from Minn.,MN 
o 153 speaker directories (labeled 0050 through 0205) 

• Hard-Disk#2:  CU-Move Release 2.0A:  {80GB disk size} 
o Documentation File [CU-Move-CorpusRel-2.0A.Nov02] 
o St. Louis, MO: all 152 speakers collected from St. Louis, MO 
o Manchester, NH: all 124 speakers collected from Manchester, NH 

• Hard-Disk#3:      {40GB disk size} 
o Savannah, GA: 32 speakers 
o Dallas, TX: 30 speakers 
o Boulder, CO: 25 speakers 

 
[suggested disk: Western Digital Caviar, 7200rpm, IDE, 80GB or 100GB] 

 
This write-up consists of all necessary documentation which was contained in Release 1.1A (note 
that Hard-Disk#3 release will not contain any further documentation than what is contained in this 
document). This document contains a more detailed description of the collection protocol, speaker 
population profiles (age, education, gender, etc.), transcription details, environmental noise 
analysis, speaker training and testing lists.  
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This document is intended to provide the necessary description of how data was processed and 
organized on your hard disk distribution. 
Section 2: Directory Structure for Hard Disk Distribution 
 
Disk #1:  Minneapolis, MN:   Speakers   0050  -- 0205 
 
Disk #2:  St. Louis, MO: Speakers   0206  -- 0360 
  Manchester, NH: Speakers   0361  -- 0485 
 
Disk #3: Savannah, GA: Speakers   0486  -- 0517 
  Dallas, TX:  Speakers   0519  -- 0548 
  Boulder, CO:  Speakers   0001  -- 0028 
 
As an example from Disk #1: Each speaker directory is numbered 0050 through 0205. Each 
speaker directory contains the following files or sub-directories: 
 
 0050-03.sph    
 0050-06.sph 
 0050-07.sph 
 0050-BF.sph 
 0050-03.trs 

/Navigation 
/Digits 
/Streets 
/Sentences 
/Dialog 

 
All speech files are in NIST Sphere header format (contact NIST for information, we used their 
Sphere2.6a package). Each audio segment is 45 minutes in duration, and composed of 5 areas 
broken into Part 1 and 2 (summarized below). Each of the sub-directories above are empty. We 
provide a Perl script and C-code to automatically extract each audio segment area (i.e., Digits, 
Streets, etc.). 
 
PART 1: Structured Text Prompts.   The driver performs a fixed route similar in structure to what 
was done for Phase 1 data collection that includes a combination of driving conditions (city, 
highway, traffic noise, etc.) for each speaker. Prompts were given from a laptop display situated 
around the glove compartment of the vehicle. This portion takes 30 minutes to complete. There are 
four subsections that include: 
 
[1.] NAVIGATION Direction Phrases section: a collection of phrases which are determined to 

be useful for In-Vehicle navigation interaction [prompts fixed for all speakers]  
[2.] DIGITS prompts section: strings of digits for the speaker to say [prompts randomized]  
[3.] STREETS / Address / Route locations section: street names or locations within the city; 

some street names will be spelled, some just spoken. [prompts randomized]  
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[4.] SENTENCES - General Phonetically Balanced Sentences section: collection of phonetically 
balanced sentences for the speaker to produce [prompts randomized]  

 
PART 2:  DIALOG Wizard - of - Oz Collection. Here, the user calls a human "wizard" (WOZ) 
who guides the subject through various routes determined for that city. More than 100 route 
scenarios particular to each city were generated so that users would be traveling to locations of 
interest for that city.  The human WOZ had access to a list of  establishments for that city where 
subjects would request route information (e.g., "How do I get to the closest police station?" "How 
do I get to the Hello Deli?"). The user would call in with a modified cell-phone in the car, that 
allows for data collection using one of the digital channels from our recorder. 
 
 
 
Data Preparation: 
Each of the 44kHz audio streams must be processed and organized for distribution. The sequence 
of data preparation is: 

1) Channels 1-5 were submitted to the Beamformer code to obtain 1 beamformed channel 
output which is still at the 44kHz sample rate. 

 
2) The following channels were then submitted to the downsample code to produce 16kHz 

output signals:  (files from speaker 0050 shown alongside) 
a. 44kHz Beamformed output    0050-BF.sph 
b. Channel 3 (center channel of array)  0050-03.sph    
c. Ref. Channel     0050-06.sph 
d. Cell Phone mike (if available)  0050-07.sph  
e. AKG mike (if available)   0050-08.sph 

Again, the outputs here were stored in uncompressed SPHERE header format. 
 
Notes:  
• For RELEASE 1.0A (Minneapolis, MN) data, the AKG microphone was not available, so 

channel  spkr_08.sph is not present for any of the speakers. Also, for a small set of the 153 
speakers, the Cell Phone channel (spkr_07.sph) was not available (this was due usually to a case 
when the human WOZ was not available at the route server back at CSLR to engage the subject 
in route navigation). 

• For RELEASE 2.0A  
o St. Louis, MO: this data contained the AKG microphone (powered by a power 

supply built at CSLR). This city contained WOZ and AKG for all speakers (some 
exceptions noted in the speaker summary sheets). 

o Manchester, NH: this data contained WOZ dialog portion, some AKG microphone 
recordings.  

o Savannah, GA; Dallas, TX; Boulder, CO: this data contains array and reference 
microphone recordings. No AKG or WOZ data is available for these cities (in an 
effort to reduce costs, WOZ support was dropped after Manchester, NH). 

 
Note: in Sec. 5, detailed speaker information as well as identification of which channels are 
available for each speaker are provided. 
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Data Distribution Format:  
 
Since a large amount of data has been collected (over 700 GB), we are distributing CU-Move data 
via hard disk. Center members interested in receiving the data should purchase their own hard disk 
(suggested disk: Western Digital Caviar, 7200rpm, IDE, 80GB or 100GB), [see Pg. 2 for 
summary of disk size for the 3 releases], and forward it to CSLR. We will download speech data 
and transcriptions and return the disk. As further portions of the estimated 700GB of data have 
become available (transcribed, downsampled/organized for distribution), we have distributed the 
corpus via hard disk (we fill up your hard disk and return). 
 
The disk contained in this shipment was formatted on a Linux machine [we are presently using 
FAT32, so the disk can be read from a Linux or Windows machine]. The procedure for extracting 
data is as follows: 

1) Create a mount-point directory on your Linux machine (something like /home/cumove) 
2) Install the hard disk into your machine (we installed as a “slave” drive, with the assumption 

that your main drive is the “master” which has the operating system loaded on it). 
3) Execute the mount command:  

Mount  -t  ext2  /dev/hd{a,b,c,d}  /home/cumove 
Note that normally hard disk “a” is your master with the operating system, so most likely 
the drive will be either {b,c,b}, depending on how many drives you have already on your 
machine. After mounting, you should be able to access all the data on the hard disk. 

 
CU-Move Cell-Phone Data (part of release 1.1A): 
The CU-Move Wizard-of-Oz Dialog component had a modified cell phone which allowed for 
direct recording onto the Fostex unit. There was also audio collected back at CSLR for the human 
WOZ who was talking with the subject in the field.  There is a Cell-Phone directory on the disk 
that is provided “as is”, but would provide useful information on telephone channel issues during 
WOZ dialog collection. There may not be perfect alignment with transcripts provided with 
Channel 3 (the transcriber tool time stamps a begin point before speech is provided). The data is 
organized as follows: 
 
 0050-001mn  speaker 50, using route scenario 1 from Minn., MN 
 0050-002mn  speaker 50, using route scenario 2 from Minn., MN 
 0058-015mn  speaker 58, using route scenario 15 from Minn., MN 
 0058-RTEmn  speaker 58, describing actual driving route back to pickup 
 
These represent the entire audio stream collected at CSLR (from the WOZ side after passing 
through the cell phone in the field and telephone network). Example 0050-001mn is speaker 
number 50, “001” means that route scenario “1” was selected (about 100 unique routes for each 
city were formed and are included on the hard disk as well under WOZ-routes). This provides 
details on street names for directions.  The last format file in this directory is the 0058-RTEmn file. 
Any “RTE” files contain subjects describing what they see as they are driving back to the base 
pickup point (what they see out the window). This represents the most natural dialog speech and 
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occurs while the car is moving to a destination (the other route scenarios focus on the subject 
discussing route plans, but the vehicle is not actually moving to that location because of time 
collection restrictions).  
Section 3:  Transcription Details & Results 
 

In this section, we discuss CSLR’s transcription work on the CU-Move corpus. Since a number 
of transcribers participated, we also performed a spell check analysis and an evaluation of inter-
labeler reliability. 

 We used Channel 3 from the microphone array for all transcription efforts. The focus was on 
obtaining text transcriptions of all data produced in the 45minute stream. The files needed for 
transcription are as follows: 

1) Produce a transcription file for EACH of speaker, with a text segment identifier that 
indicates each of the 5 CU-Move audio Parts (i.e., within the transcription file 0050-03.trs, 
there are 5 text identifiers that say: Part 1, Part 2, …, Part 5, that identify the starting 
location where each of the 5 data collection parts begin (Navigation, Digits, Streets, 
Sentences, Dialog).  

2) All transcription was done with the LDC Transcriber tool (see the LDC web page for a free 
download and documentation of the transcription tool).  

3) Transcription of Part 1: Structured Text Prompts, focused on verification that the speakers 
produced what was prompted for on the dashboard display. Each speaker would advance 
the display using a handheld wireless mouse. The four parts of this area included: 
NAVIGATION Direction Phrases, DIGITS, STREETS / Address / Route locations section, 
and SENTENCES - General Phonetically Balanced Sentences.  

4) Transcription of Part 2:  DIALOG Wizard - of - Oz Collection, focused on providing 
word/sentence level transcription of the spontaneous dialog between the field subject and 
the CSLR WOZ operator for each of the field subject’s selected points of route navigation.  

 
 
A group of three transcribers worked to perform verification and word level transcription of the 
CU-Move corpus.  After transcription work was completed, a spell checking task was performed to 
verify consistency across transcribers for spelling and labeling.  
 
Finally, in an effort to assess the inter-labeler reliability across the three transcribers, we performed 
a blind transcription task where each of the transcribers independently and without their 
knowledge, transcribed a small set of CU-Move speakers. Next, using these transcription files, we 
performed a test using the NIST sclite code to determine differences in output transcripts. The 
table below summarizes a comparison based on Parts 1-4 (which consisted of prompted speech, 
and therefore should have higher labeler agreement), along with Part 5 (which consists of WOZ 
spontaneous speech, and therefore would possess more variability between transcribers).  Clearly 
the performance numbers will depend heavily on which speakers are selected (if one subject 
speaks softly and mumbles their voice, there will be higher disagreement between transcribers; 
versus a speaker who clearly articulates their speech). We should examples from two speakers 
below in Tables 1 and 2. 
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PERFORMANCE  [Part 1-4] TRANSCRIBER 
Ref#-to-Hypoth# DEL SUB INS WER 
TRANS: #1-to-#2 2.7 1.6 5.8 10.1 
TRANS: #1-to-#3 5.6 1.8 5.1 12.5 
TRANS: #2-to-#1 5.7 1.5 2.6 9.8 
TRANS: #2-to-#3 4.4 2.0 0.8 7.1 
TRANS: #3-to-#1 5.1 1.8 5.7 12.5 
TRANS: #3-to-#2 0.8 2.0 4.6 7.4 

 
 

AVERAGE 4.0 1.8 4.1 9.9% 
 
Table 1: Transcriber agreement between 3 CU-Move transcribers using Parts 1-4 for 
sample utterance 002 (i.e., approximately 30 minutes of speech material, majority of 
speech was prompted with an in-dash display.)  

 
PERFORMANCE  [Part 5] TRANSCRIBER 

Ref#-to-Hypoth# DEL SUB INS WER 
TRANS: #1-to-#2 6.9 3.1 16. 26 
TRANS: #1-to-#3 14.6 2.9 6.3 23.8 

AVERAGE 10.8 3.0 11 25% 

 
 

 
 
Table 2: Transcriber agreement between CU-Move transcribers using Part 5 (WOZ) for 
sample utterance 002 (i.e., approximately 15 minutes of speech material, majority of 
speech was spontaneous navigation dialog material.)  
 
Table 1 shows that across the three transcribers, there was significant agreement in transcription 
text and notation for Parts 1-4 (Navigation, Digits, Streets, Sentences). The average WER was 
9.9%. We should point out that this will vary across the speakers in the corpus, and since it takes 
approximately 6 hours to transcribe one speaker, we only tested a small set for the three 
transcribers. Table 2 shows transcriber agreement for Part 5, the human-to-human WOZ route 
navigation dialog portion. As expected, since this is spontaneous speech, there is much more 
variability in how transcribers mark this material. We see that there is an average 25% WER across 
the two transcribers (we did not test the third transcriber, since he performed less of the WOZ 
transcription effort).  
 
The results from Tables 1 and 2 suggest that strong agreement exists between transcribers for the 
+500 CU-Move speaker corpus. We should again point out that these numbers will vary across 
individual speakers depending on their regional accent and articulation traits.  
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Section 4:  In-Vehicle Environmental Noise Analysis 
 
One of the primary goals of the CU-Move corpus is to collect speech data within realistic 
automobile driving conditions for route navigation and planning. Prior to selection of the vehicle 
used for Phase II data collection across the United States, and in depth acoustic analysis was first 
performed on six vehicles in Boulder, Colorado. This section briefly summarizes this analysis and 
the noise analysis findings.  
 
Vehicles: 
A set of six vehicles were selected for in-vehicle noise analysis. These vehicles were model years of 2000 
or 2001 (all had odometer mileage readings which ranged between 11 – 8,000 miles). The six vehicles 
were: 

• [Cav] Chevy Cavalier Compact Car 
• [Ven] Chevy Ventura Mini-Van 
• [SUV] Chevy SUV Blazer 
• [S10] Chevy S10 Extended Pickup Truck 
• [Sil] Chevy Silverado Pickup Truck 
• [Exp] Chevy Express Cargo Van 

 
The Cav, Ven, and SUV were leased from a local rental car company, and all had mileage odometer 
readings between 3000-8000 miles. Since pickup trucks and cargo vans were not easily obtained from local 
rental car companies, arrangements were made to obtain access to the remaining three vehicles from a local 
GM car dealer. The [S10] Extended Cab pickup truck had 9 miles total on its odometer. The Silverado [Sil] 
pickup truck had a total of 17 miles on its odometer, and the Chevy Express [Exp] cargo van had an 
odometer reading of 21 miles. All vehicles were 2001 models.  Figure 1 shows sample images of two of the 
six vehicles that were used for acoustic noise data collection. 
 
 

 
 

Figure 1: Images of vehicles used for acoustic noise data collection  
(Chevy Express Van and Chevy S10 Extended Cab pickup truck) 

 
Recording Setup: 
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Having selected the vehicles, we now turn to the data collection setup.  A five channel microphone array 
was developed (designed, constructed, and tested) for use in interactive speech systems by researchers at the 
Center for Spoken Language Research (CSRL) under support from DARPA. Figure 2 shows an image of 
the five-channel microphone array (three additional arrays were constructed using a designed PC board 
from the proto-type shown, and used for Phase II collection across the United States).  The array was 
constructed using Knowles microphones. The microphone array was evaluated on a per channel basis for 
power supply and pre-amplification transfer function. Individual channel outputs were directed out from the 
array for each microphone (i.e., individual microphone channel outputs were wired to a multi-unit 
connector at one end of the array). In addition to this array, a reference noise microphone and housing was 
also developed and constructed by CSLR. Figure 2 shows the CSLR microphone array and digital recorder. 
The following discussion considers the microphone array frequency response and microphone pre-amp 
circuit. Figures 6,7, and 8 show figures of four of the six vehicles where microphone array, reference 
microphone, and digital channel recorder setup is shown. For all vehicles, the data recording unit was 
powered from an auxiliary power source from each vehicle. A DC-to-AC power converter was used to 
supply power to the Fostex 8-channel digital recorder, Shure mixer which was modified to work as a pre-
amplifier, and a constructed DC power supply for the reference and microphone array. For all data 
collection, the engine was started and allowed to run for several minutes before powering up the supply on 
the recorder unit (i.e., the Fostex, then pre-amp, then microphone power). This allows the higher startup 
surge power for the Fostex unit to settle before power is drawn for the preamp and microphone power 
supply.  During all recording sessions, the recording power system worked without any problems (no fuse 
problems, or high current drain during startup). 
 

 
 

Figure 2: CSLR Microphone array (early proto-type) and constructed 8-channel digital recorder 
system. 

 
Microphone Characteristics for CU-Move Data Acquisition: 
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The 5-channel microphone array and reference microphone used for CU-Move data collection was 
designed, built, and tested at the CSLR. Both input devices use the Knowles EK3024 12S 
microphone. This microphone has an output impedance of 2.8kOhm to 6.8kOhm at 1kHz, with a 
<10V supply, and a sensitivity of -53 dB re (1Vrms/0.1Pa). The response curve is shown in Figure 
3. This plot is for an open circuit condition with a 1.3V supply.  

Figure 3: Knowles EK3024 12S microphone frequency response used for array and ref. mike. 
 
 
Microphone Gain Circuit:  The microphone filtered gain circuit used for the individual 
microphones in the array and reference microphone is shown in Figure 4. It is composed of a 
Multiple Feed Back third order band pass configuration with a Butterworth response, and a single 
ended to differential output. The gain of this circuit is controlled by the resistor 2x kOhm. 
 

 
Figure 4. Microphone Filtered Gain Circuit. 

 
Note that the response of this circuit takes into account the output impedance of the microphone as 
a source impedance for the node marked (IN). Thus, the effective impedance in the branch with the 
47nF capacitor is, in the worst case, 6.8kOhm + 49.9kOhm. The frequency response of the 
microphone filtered gain circuit, approximated for 500hZ and above, can be expressed as 
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The response is plotted in Fig. 5a. The -3dB point and gain taken from the plot are 12kHz and 4dB 
respectively. The frequency response below 500Hz can be expressed as, 
 

 
The response is plotted in Fig. 5b. The -3dB point and gain taken from the plot are 60Hz and 4dB 
respectively. The fixed gain of this response excludes the gain set by the x kOhm resistor in Figure 
19. The overall gain for the array and reference microphones is empirically set to –50dB (re 20uP) 
and can be modified by adjustment of resistor 2x kOhm. Given the EK 3024 sensitivity of 
1.0V/0.1Pa, assumed at 1kHz, the overall sensitivity of the array and reference microphones is 
expected to be 159V/Pa. 
 

 a) Approximation f > 500 Hz    b) Approximation f < 500 Hz 
 

Figure 5. Amplitude Frequency Response of the Array and Reference Microphones. 
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Figure 6: Chevy Express Van: Data Collection Setup: Microphone array position, digital data 
recorder position, Reference microphone and positioning behind driver seat. 

 

 

 
Figure 7: Chevy S10 Extended Cab Pickup Truck: Data Collection Setup: (a) Microphone array 
position, (b) digital data recorder position, (c) Reference microphone and positioning behind driver 
seat (note: photo taken through rear window towards driver’s seat). 
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Figure 8: Chevy Silverado Pickup Truck: Data Collection Setup: Microphone array position, 
digital data recorder position, Reference microphone and positioning behind driver seat (note: 
photo taken through rear window towards driver’s seat). 
 

 

 
 

Figure 9: Chevy SUV Blazer: Data Collection Setup: Microphone array position, digital data 
recorder position, Reference microphone and positioning behind driver seat. 
 
Route and Vehicle Setup: 
Since the focus of our Phase I evaluation was to determine a vehicle that would broadly represent vehicles 
for in-vehicle route navigation and information access, a route was planned which contained a sample of all 
driving conditions expected for use in city and rural areas. Figure 10 shows the approximately 18 mile route 
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which began at Scott Carpenter Park [Boulder, CO] (which was used as a staging area, since we could test 
recording equipment for sound levels with limited outside traffic noise).  Stop lights are indicated at each 
intersection encountered, as well as locations where a predetermined phonetically balanced sentence was 
produced. Note that the microphone array and reference microphone were positioned on the driver side of 
each vehicle. Data collected in Phase II had the microphone array on the passenger side. Recording began at 
the PARK, with windows closed, AC off. The route up until Sentence #1 represented moderate traffic 
(several stop lights, speeds approximately 40-45 mph). At Sentence #1, this is after acceleration onto the 
Boulder Turnpike (Route 36) where the speed limit is 65mph (4 lane divided highway). We traveled south-
east on Rt-36 until we took an exit ramp near a Costco store which is the Louisville-Superior exit [about 5 
miles from Boulder] (this was an exit ramp with an overpass, 2 stop lights needed until we could go back 
onto Rt-36 traveling back north-west towards Boulder again). Upon entering Rt-36 again, the passenger and 
driver’s windows were lowered by about 2 inches. Upon reaching Colorado Ave., we turned into Univ. 
Colorado Boulder campus, and drove up through Broadway and finally onto Arapahoe Ave. This area is 
very high traffic area with many students crossing the 4-lane road, bicycles, stops lights – (stop and go 
traffic), etc. Speeds may have reached 30mph, but only for short periods of time. Windows were rolled 
down ½ way for both the driver and passenger side windows when we reached Arapahoe Ave. When we 
reached the intersection of 28th St., the windows were rolled up and the AC turn on with fan at full speed. 
This was kept on until we reached the PARK on 30th St., at which time the AC was turned off; and the 
wiper blades were turned on, wiper fluid used with wipers on, and wiper blades turned off. The production 
of phonetically balanced TIMIT sentences was used to represent anchors along the route for ease in labeling 
the acoustic recordings.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Boulder, CO route selected for Phase I data collection. 
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Below we summarize the 10 sentences produced (by J. Hansen, two examples of each) during 
Phase 1 collection. The text of these phonetically balanced sentences were obtained from the 
TIMIT speech corpus.  These sentences were produced at the same location for each of the six GM 
vehicles during the approximately 17 mile route. This also helped significantly in tracking changes 
in route conditions for transcription (i.e., locations during the recording where turn signals or 
traffic noise conditions would be labeled for each vehicle). 

 
1.  She had your dark suit in greasy wash water all year .  
2.  Don't ask me to carry an oily rag like that  
3.  Only the best players enjoy popularity. 
4.  A good attitude is unbeatable.   
5.  I honor my mom. 
6.  Ambidextrous pickpockets accomplish more. 
7.  Iguanas and alligators are tropical reptiles. 
8.  Of course you can have another tunafish sandwich. 
9.  An official deadline cannot be postponed. 
10. Are you looking for employment? 

 
Acoustic Noise Analysis 
In this section, we summarize acoustic noise analysis of the CU-Move: Phase I data collection. All 
acoustic noise conditions are collected across 6 vehicles: Blazer, Cavalier, Venture, Express, S10, 
and Silverado. The noises were labeled into 14 categories which include:  
 

1)  Idle noise: the sound of the engine after starting and not moving, windows closed 
2)  Noise at 45 mph, window opened 1".  
3)  Noise at 45 mph, window closed.  
4)  Noise at 45 mph, window opened half way down.  
5)  Noise at 65 mph, window opened 1".  
6)  Noise at 65 mph, window closed.  
7)  Acceleration noise, window closed.  
8)  Acceleration noise, window opened half way down.  
9)  A/C (high) noise, window closed.  
10)  Deceleration noise, window opened 1".  
11)  Turn signal noise at 65 mph, window closed.  
12)  Turn signal noise, window opened 1".  
13)  Turn signal noise, window closed.  
14)  Wiper blade noise, window closed. 

 
A total of 14 noise conditions were extracted from the same conditions and locations as possible 
for each of the 6 GM vehicles.  
 
Figure 11 shows the scatter plots of 5 of the 14 noise conditions, including the average point, for 
all 6 cars. From these figures, we see that idle noise condition is located at the bottom point for all 
cars. The noise at 65 mph with window opened 1" occurs at the highest point for all cars. Most of 
noises show the same trend regarding low/high frequency location points for different cars. For 
example, the noise at 45 mph with windows closed and acceleration noise with windows closed are 
always close to the average PSD point for all cars. For the same car, the turn signal noise, windows 
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opened 1" are always less than the windows closed condition, and both are less than the windows 
closed at 65 mph noise condition. 
 These scatter plots will help us to decide, in terms of the balance across noise PSD, which 
noises we can use to train for speech recognition in car  environments in order to addressed all 
noise characteristics as possible. For example, car noise at 65 mph with windows opened 1" should 
be included as one necessary noise condition during speech recognition training, since it occupies 
an extreme point in the low/high frequency PSD space. In addition to selecting noise conditions 
that occupy extreme points in the low/high frequency PSD space, a representative sampling of 
noise conditions between these extremes should also be included. For the SUV (Blazer), one 
possible set of noise conditions to include would be (i) 65 mph with windows opened 1", (ii) noise 
at 45 mph with windows closed, (iii) turn signal noise with windows opened 1", and (iv) 
acceleration noise with windows opened half way.  

  

(a) Noise at 45 mph, window closed         (b) Noise at 65 mph, window opened 1" 

(c) Acceleration noise, windows opened half way        (d) Idle noise, window closed 
 
Figure 11: Summary of low versus high frequency log power in decibels for 4 noise 
conditions across 6 vehicles. 
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Other observations can be made based on the variability across vehicles. For example, if there is 
limited low/high frequency separation across the six vehicles, this would suggest that a common 
noise model could be constructed using noise from all vehicles. This would increase the available 
amount of training data. Some observations are as follows: 
 

♦ Idle Noise with Windows closed: the six vehicles have similar noise levels. The EXP 
and SIL vehicles have slightly lower levels for the low frequency band, but the other 
four have about the same. Based on average noise energy levels, a single noise model 
would be sufficient for idle noise.  

♦ Wiper Blade Noise: again we see that there is a slight separation across vehicles for 
noise energy in the low frequency band, but good agreement for high frequency band. 
A single noise model here with perhaps 2 mixtures would appear to work well. 

♦ Turn Signal Noise: with windows closed, there appears to be a strong separation 
across the vehicles. This noise source would need to be uniquely modeled for each 
vehicle. These results vary when there is also Windows Open Noise included. For 
windows open 1 inch and turn signal, there was tight coupling of  VEN, SUV, CAV 
and S10, EXP, SIL. Two different models would be needed here. 

♦ Deceleration with Windows Open 1 inch: the CAV is the nosiest vehicle and the SIL 
is the most quiet. The other four vehicles grouped together.  

♦ Acceleration with Windows Open ½ way:  there is a wide noise level range for all six 
vehicles. Several models or multiple mixtures would be needed to cover the range of 
noise from the 6 vehicles. Similar observations can be made for acceleration with 
windows closed, though the spread across the vehicles is less. 

♦ 65mph, Windows Closed: there is good coupling for most of the vehicles. The CAV 
(compact car) and VEN (passenger van) were the most noisy. 

♦ 65mph & 45mph, Windows open 1 inch: both conditions showed a wider noise range 
for the six vehicles. Again, more than one noise model or mixture weight would be 
needed to represent this noise condition in speech recognition. 

♦ 45mph, windows open ½ way: this again showed a wide range of noise variation 
across the vehicles. The S10 was the most quiet, and the CAV was the most noisy.  

 
GENERAL CONCLUSION: If we consider the relative balance between low (0-1500Hz) and 
high (1500-4000Hz) frequency energy content in PSD space for the six vehicles, we see that 
the CAV was generally the most noisy, the SUV was typically in the middle, and the SIL and 
S10 pickup trucks were the most quiet.  

 
 From the above scatter plots and other figures from our database, we can divide cars into 2 
separate groups: SUV (Blazer) + CAV (Cavalier) + VEN (Venture) and EXP (Express) + S10 + 
SIL (Silverado). The first group was centered at higher energy content while the second group was 
concentrated at lower energy. We also find the SUV (Blazer) to be a lower bound for the upper 
group, and therefore located close to the average across the six vehicles. Therefore, the SUV 
(Blazer) would be a good selection since it is close to the mean of all 6 vehicles.  
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Symbol Notation for Figure 9 and numerical notation used for Figure 10. 
 1. Noise at 45 mph, window opened 1". (+) 
 2. Noise at 45 mph, window closed.  (o) 
 3. Noise at 45 mph, window opened half way down. (* black) 
 4. Noise at 65 mph, window opened 1". (point) 
 5. Noise at 65 mph, window closed. (x) 
 6. Acceleration noise, window closed. (square) 
 7. Acceleration noise, window opened half way down. (diamond) 
 8. A/C (air conditioning, fan on high) noise, window closed. (upward pointing triangle) 
 9. Deceleration noise, window opened 1". (downward pointing triangle) 
 10. Idle noise: the sound of the engine after starting and no moving. (* blue)  

11. Turn signal noise at 65 mph, window closed. (right pointing triangle) 
 12. Turn signal noise, window opened 1". (left pointing triangle) 
 13. Turn signal noise, window closed. (pentagram)  
 14. Wiper blade noise, window closed. (hexagram) 
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Figure 12: Scatter Plots of low vs. high Freq. 14 noise sources for each Vehicle  
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Figure 13: Deviation from Overall Avg. of 14 noise sources for each Vehicle   
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When we look at the scatterplots of  low (0-1500Hz) versus high (1500-4000Hz) frequency 
content for the 14 noise conditions, the following observations are made. The noise condition “car 
idle” is consistently the lowest value across all six vehicles, with SIL pickup truck having the 
lowest noise value and VEN mini-van having the high noise value for idle.   For the overall 
average noise value, (indicated with a red star) the VEN (mini-van) and CAV (compact) vehicles 
had the highest noise levels. The S10, SIL, and EXP all  have similar overall average means, 
suggesting that a single noise model might be sufficient. The BLA (SUV) noise conditions were in 
general in the middle of the six vehicles (the VEN and CAV were generally noisier, and the S10, 
SIL, and EXP were generally slightly less noisy than the BLA).  Figure 13 shows the deviation 
from overall average for each vehicle (note that the 14 noise conditions are numbered in order 
from 1. “idle noise” to 14. “wiper blade noise with windows closed”.  This figure allows us to 
directly compare noise level differences from overall mean to determine if one or more mixtures 
are needed for noise modeling in HMM speech recognition. We see similar trends for most of the 
noise conditions, with “11 .Turn signal noise at 65 mph, window closed” condition having more 
deviation from the vehicle means than other noises. We summarize specific recommendations on 
noise modeling for each noise conditions after a discussion on spectrogram analysis for a sample 
set of noises. 

 
Spectrogram Analysis  
 
     For some noise conditions such as turn signal and wiper blade, it is more useful to consider time 
versus  frequency plots to illustrate periodic characteristics. Figure 14 shows spectrograms of those 
noise conditions. The spectrograms clearly show the high frequency energy content of the turn 
signal noise for the vehicles (2-4kHz). The average impulse rate for the turn signal varied from 
2.75 – 3.00Hz across the six vehicles, with sharp differences on how distinct the impulse points are 
from background noise. 
 
Turn Signal Analysis of Spectrograms: 
 

♦ BLA: SUV Blazer  
Turn signal with windows closed: most of  the energy is concentrated between  0 – 1.6 kHz, with 
periodic energy between 3.1– 4.0kHz at the following time locations: [0.1940, 0.5260, 0.8660, 1.200, 
1.536, 1.87, 2.2060, 2.54, 2.8720] sec. 

     Avg. period = 0.2975 sec   F0 = 3.361 Hz 
Turn signal, 65mph with windows open 1-2inches:  periodic frequency concentration at the following 
time locations: [0.1720, 0.5140, 0.8500, 1.1880, 2.1940, 2.5320, 2.8680] sec. 
     Avg. period = 0.3185 sec   F0 = 3.140 Hz 
Turn signal, 65mph with windows closed: most of  the energy is concentrated between  0:1000Hz, with 
periodic energy at the following time locations:  [1.3221, 1.6581, 1.9921, 2.3281, 2.6641, 2.9961, 
3.3321, 3.6681] sec. 
     Avg. period = 0.2932 sec   F0 = 3.411 Hz 
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BLA (SUV) Blazer:  turn signal  with (i) windows closed, 65mph, (ii) windows open 1-2 inches, 
(iii) windows closed  

 
Blazer, wiper blade, window closed. 

Figure 14: Spectrographic analysis of wiper blade noise across SUV vehicle 
 
 
 
 
 
 
 
 

Figure 15: Spectrographic analysis of BLA for acceleration onto a highway. 
 

The results from this section  clearly show a range of noise conditions for the six vehicles selected. 
While there is variability across the vehicles, the Chevy Blazer SUV represents one vehicle in the 
middle of noise distribution scatter plots. The CAV and VEN were on average noisy than SUV, 
while the EXP, S10, SIL were slightly more quite. As a result, we selected SUV as the vehicle for 
Phase II data collection across the United States.  
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Power Spectrum Density (PSD) with Low vs. High Frequency Band Comparisons 

 
Figure 16: Engine Idle noise (car not moving), windows closed 

 
Figure 17: Noise at 65 mph, window open 1 inch 
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Section 5: Speaker Information  
 
In this section, we focus on summarizing details on the speaker population that make up the CU-
Move Corpus. Recall that speech was collected from six U.S. cities as shown in Fig. 18 below. 
 

 
Figure 18: United States Map of cities visited and dates where speech was collected. 

 
The complete CU-Move corpus consists of 3 hard disk distributions (60GB,80GB,40GB). The 
180GB of data represents a downsampled, beamformed, and organized version from our original 
+700GB of data originally sampled at 44.1kHz. The following lists which speakers and cities are 
associated with which disks.  
 
Disk #1:  Minneapolis, MN:   Speakers   0050  -- 0205 
 
Disk #2:  St. Louis, MO: Speakers   0206  -- 0360 
  Manchester, NH: Speakers   0361  -- 0485 
 
Disk #3: Savannah, GA: Speakers   0486  -- 0517 
  Dallas, TX:  Speakers   0519  -- 0548 
  Boulder, CO:  Speakers   0001  -- 0028 
 
In this section, we summarize the per city speaker information listings, as well as provide the 
recommended (i) train, (ii) development test, and (iii) test sets for the CU-Move corpus. 
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Speaker Information on CU-Move: 
 
• Male/Female Distribution:   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Educational Level (grade level completed):  
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• Age Level Distribution CU-Move Corpus: 

• CU-Move: Ethnicity of Participants: 
          White /             Nat. Amer./    Asian/Pacific       African         Mex.-Amer./        Ethnicity 
        Caucasion         Nat. Alaskan          Islander          American          Latino       (specific) 
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• Speaker Lists: Train, Development-Test, Test sets 

Here, we summarize the recommended training, development-test, and test speaker sets for the 
CU-Move corpus across the six cities. The lists are provided in terms of increasing age (from 17-
75 years old), and separated between male and female lists. The format is as follows: 

Format for lists: Speaker Number     Age{yrs} 
So, for Boulder, CO, the first male speaker in the training set is speaker 15, who is 20 years old. 
The first female is speaker 16, who is 22 years old. 

Boulder, CO  {Speakers 1-28} 
MALE  Development  FEMALE Development 
Training Set Test Set Test Set  Training Set Test Set Test Set 
    (6 spkrs)  (2 spkrs) (5 spkrs)     (7 spkrs)  (2 spkrs)  (6 spkrs) 
15 20 19 21 [28] 21 16 22 [7] 24 [5[ 27 
[3] 24   [10] 24 12 27   20 29 
[6] 25 [1] 28 [2] 29 22 29 [4] 31 18 31 
[8] 29     14 41   17 46 
[25] 45   23 46 [9] 49   21 50  
[27] 49   13 70 24 61   11 66 

[26]      72 
Boulder, CO Note: the speakers denoted [x] represent missing speakers [1-10, 25-28]. A number of initial speakers 
from Boulder volunteered during an initial training and testing phase for the team going on the road. At this time, these 
speakers are not available. Any changes in the status of these speakers will be posted on the CU-Move web page. 
 
Savannah, GA   {Speakers 486-517} 
MALE Development   FEMALE Development 
Training Set Test Set Test Set  Training Set Test Set Test Set 
    (8 spkrs)  (3 spkrs) (6 spkrs)     (7 spkrs)  (3 spkrs)  (5 spkrs) 
495 19 494 20 515 20 502 19 505 21 
516 21     490 22   496 22 
493 25 503 25 507 25 491 26 497 29 
492 29     506 29   517 31 
488 35 510 35 511 35 504 34   489 38 
487 36   501 42 486 43 512 45 509 46 
498 43   508 43 500 53   499 69 
513 43   514 48 
Savannah, GA Note: all speakers present, verified, and okay. 
 
Dallas, TX    {Speakers 519-548} 
MALE Development   FEMALE Development 
Training Set Test Set Test Set  Training Set Test Set Test Set 
    (7 spkrs)  (2 spkrs) (5 spkrs)     (8 spkrs)  (3 spkrs)  (5 spkrs) 
538 18   520 22 532 21   523 22 
548 25   533 26 522 32 527 32 528 33 
519 32 524 37 536 37 541 36 530 37 540 38 
547 43   534 53 526 39 
543 58   535 60 537 39   544 40 
[525] 62 531 65   545 45 542 48 
546 66     521 54   529 58 
      539 64 
Dallas, TX  Note:  Speaker 525 is incomplete, but all other speakers present, verified, and okay. 
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Manchester, NH     {Speakers 361-485} 
MALE     FEMALE 

Development     Development 
Training Set Test Set Test Set  Training Set Test Set Test Set 
   (26 spkrs) (9 spkrs)  (18 spkrs)   (35 spkrs)  (12 spkrs)          (25 spkrs) 
402 18 408 18 366 19 403 18 426 18 448 18 
369 19     449 18 
380 20 383 20 391 20 433 19 
392 20 362 21 395 22 411 20 416 20 430 20 
387 23   400 23 441 20 
452 26   454 26 444 22 393 23 427 23 
446 27     365 24 412 24 415 24 
390 28     459 24   405 25 
425 28 462 28 396 29 442 25 
480 29     378 26   472 26 
361 30 [414] 30 456 30 388 27   410 29 
406 31   [420] 31 434 29 413 31 419 31 
481 31     468 31 
418 32 469 32 482 32 367 32   428 32 
368 35 363 36 485 36 404 33 [435] 33 
423 37     451 37   461 38 
379 38   397 38 398 40 421 40 464 40 
447 39     477 40 
478 40   483 40 375 41   465 41 
374 42   484 42 381 42 399 42 445 42 
457 44 382 45 471 45 424 43 
474 45     376 44   409 44 
437 46   463 48 443 44 458 44 460 44 
371 49 453 50 455 50 470 44 
422 51   450 52 439 45   364 46 
384 53   394 69 466 46   479 46 

429 47 389 48 436 48 
386 49   475 49 
370 50 373 50 432 50 
438 50 
407 51   467 51 
473 51   417 52 
385 53   377 54 
401 54   476 54 
372 58 431 60 [440] 65 

 
 
Manchester, NH  Note: the speakers denoted [x] represent missing speakers [414,420,435,440]. These speakers were 
either (i) originally collected, but were incomplete, or (ii) there were troubles in complete transfer of data from our 
digital recorder hard-disk system unit to PC.  Any changes in the status of these speakers will be posted on the CU-
Move web page. 
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Minneapolis, MN    {Speakers 50-205} 
MALE     FEMALE 

Development     Development 
Training Set Test Set Test Set  Training Set Test Set Test Set 
    (39 spkrs)  (12 spkrs) (23 spkrs)   (43 spkrs)  (12 spkrs)  (26 spkrs) 
185 17 66 18 183 19 63 17 196 19 202 19 
189 19     132 20   167 21 
198 19   134 20 201 21 203 21 
137 20     130 22 
153 20 171 20   142 22 165 22 176 22 
131 21   174 21 182 22   195 22 
205 21   192 22 166 23 188 23 204 24 
91 23 107 23 [133] 23 80 26 
175 23     173 28 143 29 
184 23   199 23 172 29   139 31 
[135] 24   154 24 194 33 
181 25     56 34 
89 26   152 26 [129] 34 159 34 164 34 
149 28   197 28 169 34 
151 29 124 30 136 30 95 36   100 36 
191 32     60 37   186 37 
187 34 122 35 62 36 68 39 112 40 
110 37     123 40   200 40 
157 37   71 38 61 41 
155 38 158 38 87 39 150 42   72 44 
90 40     75 44 
114 40 160 41 190 41 96 44 106 44 115 44 
88 42   103 42 118 44 
145 42     161 45 
101 44 121 45 141 45 57 46 58 46 98 46 
128 46     126 46 
178 48 59 49 92 50 146 46   168 46 
94 50     67 47 
108 50     109 47   144 47 
102 52 119 52 125 52 50 48   77 48 
82 53     127 48 
97 53   138 57 78 49   83 49 
117 58     170 49 
65 59 84 60 156 61 140 50   180 50 
74 62     147 51 162 51 179 51 
120 63 52 65 93 66 79 52 
53 69     81 53   116 53 
55 70   104 71 76 54   99 54 
69 77   113 77 148 56   193 56 

86 58   73 60  
163 60 51 61 70 64 
[85] 67 105 67 177 69 
54 70   139 xx  

Minneapolis, MN  Note: the speakers denoted [x] represent missing speakers [85,129,133,135]. These speakers were 
either (i) originally collected, but were incomplete, or (ii) there were troubles in complete transfer of data from our 
digital recorder hard-disk system unit to PC.  Any changes in the status of these speakers will be posted on the CU-
Move web page. Speakers {64,111} did  not have speaker information/release forms available and therefore are not 
included in documentation or listings.  Finally, female Speaker #139 did not provide her birthdate or age, so she is 
listed as “xx” under age. 
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St. Louis, MO      {Speakers 206-360} 
MALE Development   FEMALE Development 
Training Set Test Set Test Set  Training Set Test Set Test Set 
    (40 spkrs)  (10 spkrs) (19 spkrs)   (45 spkrs)  (12 spkrs)  (28 spkrs) 
207 17 273 18 274 19 268 18 216 19 224 19 
323 19     [298] 19 
209 20 284 20 [288] 20 317 19   320 19 
343 20     208 20 [230] 20 248 20 
252 21   263 21 255 20 
282 21     212 21 218 21 221 21 
[294] 21     222 21   223 21 
311 21 318 21 322 21 226 21   234 21 
251 22     257 21 
316 22   319 22 258 21 
337 22     261 21 [293] 21 
275 23 [286] 23 [291] 23 312 21   327 21 
332 23     228 22 237 22 300 22 
307 24   309 24 243 23   279 23 
220 25     [302] 23 [295] 24 227 25 
338 25   [290] 27 242 25 
331 27     246 25   [299] 25 
313 28   330 28 [303] 25 
232 29 238 29 254 29 219 26 231 26 253 26 
342 29   349 31 278 26   334 26 
215 32     270 27   [297] 27 
232 34   328 35 249 28   213 29 
329 35 [289] 36 314 37 272 30 
315 37     280 30   256 31 
358 38   247 39 [321] 31 
[287] 41 348 41   341 32   281 33 
217 43   305 43 [296] 34 
245 44     310 34 211 36 250 36 
229 46 240 47   276 36 
355 47     277 36   333 37 
235 49   336 49 346 37 
350 50     356 37 271 38 [292] 38 
283 52 326 52   244 39   [301] 39 
360 52   211 53 335 39   265 42 
269 53     308 42 
339 55   345 55 236 45 266 45 225 46 
267 57     262 46 
351 58   352 58 325 46 
324 60 259 61   [304] 48 344 48 264 49 
354 68     [285] 49 
      210 50   306 51 

214 53 206 54 260 56 
347 56   340 58 
359 58   357 65 
353 74 

St. Louis, MO  Note: the speakers denoted [x] represent missing speakers [230,239,285-304,321]. These speakers were 
either (i) originally collected, but were incomplete, or (ii) there were troubles in complete transfer of data from our 
digital recorder hard-disk system unit to PC (this occurred for speaker set 285-304).  Any changes in the status of these 
speakers will be posted on the CU-Move web page. 
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Spe
aker 
ID 
Nu

mbe
r 

Age Date of 
Birth 

Male Female Edu
catio

n 

White/C
aucasio

n 

Native 
American/

Native 
Alaskan 

Asian/P
acific 

Islander

African-
America

n 

Mexican
-

America
n/Latino

Ethnicity 
(specific)

50 48 102952 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE 
51 61 71539 FALSE TRUE 15 TRUE FALSE FALSE FALSE FALSE 
52 65 110435 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
53 69 122031 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
54 70 30531 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE 
55 70 101330 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
56 34 32767 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
57 46 120854 FALSE TRUE 16 TRUE TRUE FALSE FALSE FALSE 
58 46 82754 FALSE TRUE 15 TRUE FALSE FALSE FALSE FALSE 
59 49 12952 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE 
60 37 70563 FALSE TRUE 17 TRUE FALSE FALSE FALSE FALSE 
61 41 13160 FALSE TRUE 20 TRUE FALSE FALSE FALSE FALSE 
62 36 51865 TRUE FALSE 15 TRUE FALSE FALSE FALSE FALSE 
63 17 72783 FALSE TRUE 11 TRUE FALSE FALSE FALSE FALSE 
65 59 100741 TRUE FALSE 19 TRUE FALSE FALSE FALSE FALSE 
66 18 42983 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
67 47 51354 FALSE TRUE 19 TRUE FALSE FALSE FALSE FALSE 
68 39 110017 FALSE TRUE 16 FALSE FALSE TRUE FALSE FALSE 
69 77 20724 TRUE FALSE 15 TRUE FALSE FALSE FALSE FALSE 
70 64 70536 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE 
71 38 30663 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
72 44 80856 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
73 60 120640 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
74 62 82438 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
75 44 82056 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
76 54 52747 FALSE TRUE 20 TRUE FALSE FALSE FALSE FALSE 
77 48 43054 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
78 49 101051 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE 
79 52 122148 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
80 26 112374 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE 
81 53 121147 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
82 53 100447 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
83 49 111651 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE 
84 60  TRUE FALSE FALSE FALSE FALSE FALSE FALSE 
85 67 100733 FALSE TRUE 16 FALSE FALSE TRUE FALSE FALSE 
86 58 122942 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE 
87 39 30662 TRUE FALSE 13 TRUE FALSE FALSE FALSE FALSE 
88 42 92558 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
89 26 11775 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
90 40 80160 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 

Minniapolis, MN 

CU-Move 
Speaker Information 
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91 23 71227 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
92 50 32849 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE 
93 66 11735 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
94 50 10151 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
95 36 22365 FALSE TRUE 16 FALSE TRUE FALSE FALSE FALSE 
96 44 72656 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE 
97 53 82947 TRUE FALSE 17 TRUE FALSE FALSE FALSE FALSE 
98 46 92354 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
99 54 52247 FALSE TRUE 12 FALSE FALSE FALSE TRUE FALSE 

100 36 61165 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE 
101 44 111056 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE 
102 52 122748 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
103 42 53059 TRUE FALSE 16 FALSE FALSE FALSE FALSE TRUE 
104 71 82529 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
105 67 71833 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE 
106 44 22557 FALSE TRUE 22 TRUE FALSE FALSE FALSE FALSE 
107 23 102577 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE 
108 50 40951 TRUE FALSE 18 FALSE FALSE FALSE TRUE FALSE 
109 47 113053 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE 
110 37 81164 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
112 40 41861 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE 
113 77 102823 TRUE FALSE 17 TRUE FALSE FALSE FALSE FALSE 
114 40 102160 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
115 44 120756 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
116 53 32148 FALSE TRUE 19 TRUE FALSE FALSE FALSE FALSE 
117 58 121442 TRUE FALSE 16 FALSE FALSE FALSE TRUE FALSE 
118 44 33056 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE 
119 52 72848 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE 
120 63 120301 TRUE FALSE 18 TRUE FALSE FALSE FALSE FALSE 
121 45 72255 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
122 35 30966 TRUE FALSE 18 TRUE FALSE FALSE FALSE FALSE 
123 40 80560 FALSE TRUE 16 FALSE FALSE FALSE FALSE FALSE 
124 30 20671 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
125 52 60149 TRUE FALSE 17 TRUE FALSE FALSE FALSE FALSE 
126 46 90454 FALSE TRUE 15 TRUE FALSE FALSE FALSE FALSE 
127 48 62753 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE 
128 46 90154 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE 
129 34 82066 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE 
130 22 92278 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
131 21 12180 TRUE FALSE 15 TRUE FALSE FALSE FALSE FALSE 
132 20 61781 FALSE TRUE 13 TRUE FALSE FALSE FALSE FALSE 
133 23 30778 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE 
134 20 101580 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE 
135 24 0 TRUE FALSE 14 FALSE FALSE FALSE TRUE FALSE 
136 30 20371 TRUE FALSE 13 FALSE FALSE FALSE TRUE FALSE 
137 20 101580 TRUE FALSE 15 TRUE FALSE FALSE FALSE FALSE 
138 57 111943 TRUE FALSE 18 TRUE FALSE FALSE FALSE FALSE 
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139 31 32470 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
139   FALSE TRUE FALSE FALSE FALSE FALSE FALSE 
140 50 41951 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
141 45 40456 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
142 22 30879 FALSE TRUE 12 FALSE FALSE FALSE TRUE FALSE 
143 29 101271 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
144 47 0 FALSE TRUE 13 TRUE FALSE FALSE FALSE FALSE 
145 42 10759 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
146 46 80555 FALSE TRUE 20 TRUE FALSE FALSE FALSE FALSE 
147 51 92149 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
148 56 103044 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE 
149 28 120672 TRUE FALSE FALSE FALSE FALSE TRUE FALSE 
150 42 61459 FALSE TRUE 16 FALSE FALSE FALSE TRUE FALSE 

151 29 12572 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
152 26 61175 TRUE FALSE 12 FALSE FALSE FALSE FALSE FALSE HYBRID 
153 20 100989 TRUE FALSE 13 TRUE FALSE FALSE FALSE FALSE 
154 24 31977 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 

155 38 41762 TRUE FALSE 13 TRUE FALSE FALSE FALSE FALSE 
156 61 92534 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
157 37 32464 TRUE FALSE 9 TRUE FALSE FALSE FALSE FALSE 

158 38 60263 TRUE FALSE 18 TRUE FALSE FALSE FALSE FALSE 
159 34 122166 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
160 41 52360 TRUE FALSE 16 FALSE FALSE FALSE TRUE FALSE 
161 45 101955 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
162 51 71949 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
163 60 30741 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
164 34 71766 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE 
165 22 110578 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE 
166 23 102077 FALSE TRUE 16 FALSE FALSE FALSE FALSE FALSE BLACK & 

WHITE 
167 21 122179 FALSE TRUE 15 TRUE FALSE FALSE FALSE FALSE 
168 46 30755 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE 
169 34 32567 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
170 49 112251 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
171 20 80380 TRUE FALSE 15 FALSE FALSE TRUE FALSE FALSE 
172 29 41772 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
173 28 11873 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE 
174 21 22980 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE 
175 23 91477 TRUE FALSE 15 TRUE FALSE FALSE FALSE FALSE 
176 22 50279 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
177 69 71231 FALSE TRUE 11 TRUE FALSE FALSE FALSE FALSE 
178 48 111752 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
179 51 81949 FALSE TRUE 13 TRUE FALSE FALSE FALSE FALSE 
180 50 121050 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
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181 25 120275 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
182 22 100778 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE 
183 19 11882 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
184 23 62378 TRUE FALSE 17 TRUE FALSE FALSE FALSE FALSE 
185 17 61184 TRUE FALSE 11 TRUE FALSE FALSE FALSE FALSE 
186 37 32064 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
187 34 120966 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
188 23 90677 FALSE TRUE 15 TRUE FALSE FALSE FALSE FALSE 
189 19 100581 TRUE FALSE 13 TRUE FALSE FALSE FALSE FALSE 
190 41 91859 TRUE FALSE 19 TRUE FALSE FALSE FALSE FALSE 
191 32 40869 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE 
192 22 90378 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
193 56 111544 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE 
194 333 30368 FALSE TRUE 16 FALSE TRUE FALSE FALSE FALSE 
195 22 123078 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
196 19 20282 FALSE TRUE 13 FALSE FALSE FALSE FALSE FALSE ASIAN/W

HITE 
197 28 110172 TRUE FALSE 17 TRUE FALSE FALSE FALSE FALSE 

198 19 91981 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
199 23 52078 TRUE FALSE 17 TRUE FALSE FALSE FALSE FALSE 
200 40 120660 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
201 21 31880 FALSE TRUE 15 TRUE FALSE FALSE FALSE FALSE 
202 19 81381 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE 
203 21 62701 FALSE TRUE 15 TRUE FALSE FALSE FALSE FALSE 
204 24 90576 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE 
205 21 30780 TRUE FALSE 15 FALSE FALSE FALSE TRUE FALSE 
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206 54 30247 FALSE TRUE 16 FALSE TRUE FALSE FALSE FALSE  
207 17 41884 TRUE FALSE 10 TRUE FALSE FALSE FALSE FALSE  
208 20 11181 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
209 20 32381 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
210 50 122350 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
211 53 12148 TRUE FALSE 13 FALSE FALSE FALSE TRUE FALSE  
212 21 70480 FALSE TRUE 15 TRUE FALSE FALSE FALSE FALSE  
213 29 81271 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
214 53 121347 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
215 32 80768 TRUE FALSE 17 TRUE FALSE FALSE FALSE FALSE  
216 19 101281 FALSE TRUE 13 FALSE FALSE FALSE TRUE FALSE  
217 43 41258 TRUE FALSE 20 TRUE FALSE FALSE FALSE FALSE  
218 21 81079 FALSE TRUE 11 FALSE FALSE FALSE TRUE FALSE  
219 26 22575 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE  
220 25 83175 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
221 21 30780 FALSE TRUE 15 FALSE FALSE FALSE TRUE FALSE  
222 21 21980 FALSE TRUE 15 FALSE FALSE TRUE FALSE FALSE  
223 21 40880 FALSE TRUE 13 TRUE FALSE FALSE FALSE FALSE  
224 19 120481 FALSE TRUE 13 TRUE FALSE FALSE FALSE FALSE  
225 46 10155 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
226 21 50280 FALSE TRUE 15 FALSE FALSE FALSE TRUE FALSE  
227 25 20976 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE  
228 22 120378 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
229 46 80454 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
230 20 11881 FALSE TRUE 14 FALSE FALSE FALSE TRUE FALSE  
231 26 10975 FALSE TRUE 18 FALSE FALSE FALSE TRUE FALSE  
232 29 71301 TRUE FALSE 16 FALSE FALSE FALSE TRUE FALSE  
232 34 102166 TRUE FALSE 19 FALSE FALSE FALSE FALSE FALSE HUMAN 
234 21 71479 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
235 49 71551 TRUE FALSE 12 FALSE FALSE FALSE TRUE FALSE  
236 45 30756 FALSE TRUE 14 FALSE FALSE FALSE TRUE FALSE  
237 22 111978 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
238 29 32472 TRUE FALSE 15 TRUE FALSE FALSE FALSE FALSE  
240 47 110953 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
211 36 10865 FALSE TRUE 22 TRUE FALSE FALSE FALSE FALSE  
242 25 90375 FALSE TRUE 16 FALSE FALSE TRUE FALSE FALSE  
243 23 12578 FALSE TRUE 17 FALSE FALSE TRUE TRUE FALSE  
244 39 82961 FALSE TRUE 15 TRUE FALSE FALSE FALSE FALSE  
245 44 70257 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
246 25 30476 FALSE TRUE 16 TRUE TRUE FALSE FALSE FALSE  
247 39 12562 TRUE FALSE 14 FALSE FALSE FALSE TRUE FALSE  
248 20 60281 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
249 28 91272 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE  
250 36 122864 FALSE TRUE 19 TRUE FALSE FALSE FALSE FALSE  
251 22 80278 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
252 21 51280 TRUE FALSE 15 FALSE FALSE FALSE TRUE FALSE  

St. Louis, MO 
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253 26 42075 FALSE TRUE 15 TRUE FALSE FALSE FALSE FALSE  
254 29 111371 TRUE FALSE 12 FALSE FALSE FALSE TRUE FALSE  
255 20 51981 FALSE TRUE 15 FALSE FALSE FALSE FALSE TRUE  
256 31 81069 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
257 21 41480 FALSE TRUE 12 FALSE FALSE FALSE FALSE TRUE  
258 21 120679 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
259 61 52040 TRUE FALSE 14 FALSE FALSE FALSE FALSE FALSE OTHER 
260 56 70545 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE  
261 21 50380 FALSE TRUE 15 FALSE FALSE FALSE FALSE FALSE OTHER 
262 46 82554 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
263 21 72879 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
264 49 52452 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
265 42 40559 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
266 45 92755 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
267 57 101243 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
268 18 91882 FALSE TRUE 13 TRUE FALSE FALSE FALSE FALSE  
269 53 91842 TRUE FALSE 23 TRUE FALSE FALSE FALSE FALSE  
270 27 21474 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
271 38 501634 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
272 30 121570 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
273 18 112382 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
274 19 92281 TRUE FALSE 13 TRUE FALSE FALSE FALSE FALSE  
275 23 70528 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
276 36 82464 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
277 36 62165 FALSE TRUE 13 TRUE FALSE FALSE FALSE FALSE  
278 26 40975 FALSE TRUE 12 FALSE FALSE FALSE TRUE FALSE  
279 23 60878 FALSE TRUE 14 FALSE FALSE FALSE TRUE FALSE  
280 30 50171 FALSE TRUE 16 FALSE FALSE FALSE TRUE FALSE  
281 33 30468 FALSE TRUE 12 FALSE FALSE FALSE TRUE FALSE  
282 21 12180 TRUE FALSE 15 FALSE FALSE FALSE TRUE FALSE  
283 52 10445 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
284 20 12981 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
285 49 60352 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE  
286 23 71901 TRUE FALSE 16 FALSE FALSE FALSE TRUE FALSE  
287 41 92059 TRUE FALSE 13 FALSE FALSE FALSE TRUE FALSE  
288 20 21081 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
289 36 21065 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
290 27 22574 TRUE FALSE 16 FALSE FALSE FALSE TRUE FALSE  
291 23 81777 TRUE FALSE 12 FALSE FALSE FALSE TRUE FALSE  
292 38 72362 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
293 21 43080 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
295 24 71977 FALSE TRUE 17 TRUE FALSE FALSE FALSE FALSE  
294 21 62480 TRUE FALSE TRUE FALSE FALSE FALSE FALSE  
296 34 61667 FALSE TRUE 17 TRUE FALSE FALSE FALSE FALSE  
297 27  FALSE TRUE 20 TRUE FALSE FALSE FALSE FALSE  
298 19 111081 FALSE TRUE 14 FALSE FALSE FALSE TRUE FALSE  
299 25 71901 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
300 22 123078 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
301 39 110861 FALSE TRUE 21 FALSE FALSE FALSE FALSE FALSE JEWISH 
302 23 72178 FALSE TRUE 16 FALSE FALSE FALSE TRUE FALSE  
303 25 32476 FALSE TRUE 17 FALSE FALSE TRUE FALSE FALSE  
304 48 40653 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
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305 43  TRUE FALSE TRUE FALSE FALSE FALSE FALSE  
306 51 80749 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
307 24 83176 TRUE FALSE 0 TRUE FALSE FALSE TRUE FALSE  
308 42 31359 FALSE TRUE 14 FALSE FALSE FALSE TRUE FALSE  
309 24 62177 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
310 34 11067 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
311 21 92179 TRUE FALSE 15 TRUE FALSE FALSE FALSE FALSE  
312 21 11580 FALSE TRUE 15 FALSE FALSE FALSE TRUE FALSE  
313 28 80672 TRUE FALSE 19 TRUE FALSE FALSE FALSE FALSE  
314 37 11364 TRUE FALSE 17 FALSE FALSE FALSE TRUE FALSE  
315 37 51564 TRUE FALSE 18 TRUE FALSE FALSE FALSE FALSE  
316 22 110578 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
317 19 40282 FALSE TRUE 14 FALSE FALSE FALSE FALSE TRUE  
318 21 50280 TRUE FALSE 15 TRUE FALSE FALSE FALSE FALSE  
319 22 20479 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
320 19 102681 FALSE TRUE 13 TRUE FALSE FALSE FALSE FALSE  
321 31 81869 FALSE TRUE 16 FALSE FALSE FALSE TRUE FALSE  
322 21 40480 TRUE FALSE 12 FALSE FALSE FALSE TRUE FALSE  
323 19 90181 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
324 60 61241 TRUE FALSE 16 FALSE FALSE FALSE TRUE FALSE  
325 46 112954 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
326 52 83148 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
327 21 120879 FALSE TRUE 15 TRUE FALSE FALSE FALSE FALSE  
328 35 91565 TRUE FALSE 18 TRUE FALSE FALSE FALSE FALSE  
329 35 71166 TRUE FALSE 14 FALSE FALSE FALSE TRUE FALSE  
330 28 21273 TRUE FALSE 15 TRUE FALSE FALSE FALSE FALSE  
331 27 22674 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
332 23 32478 TRUE FALSE 17 TRUE FALSE FALSE FALSE FALSE  
333 37 92063 FALSE TRUE 15 TRUE FALSE FALSE FALSE FALSE  
334 26 11873 FALSE FALSE 11 TRUE FALSE FALSE FALSE FALSE  
335 39 102361 FALSE TRUE 14 FALSE FALSE FALSE TRUE FALSE  
336 49 61452 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
337 2 12178 TRUE FALSE 17 TRUE FALSE FALSE FALSE FALSE  
338 25 61376 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
339 55 12546 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
340 58 82447 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
341 32 31869 FALSE TRUE 12 FALSE FALSE FALSE TRUE FALSE  
342 29 112371 TRUE FALSE 20 TRUE FALSE FALSE FALSE FALSE  
343 20 110580 TRUE FALSE 15 FALSE FALSE FALSE FALSE FALSE ARAB 
344 48 11053 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
345 55 112645 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
346 37 21164 FALSE TRUE 25 TRUE FALSE FALSE FALSE FALSE  
347 56 52145 FALSE FALSE 0 FALSE FALSE FALSE FALSE FALSE  
348 41 20160 TRUE FALSE 16 FALSE TRUE FALSE FALSE FALSE  
349 31 61170 TRUE FALSE 19 TRUE FALSE FALSE FALSE FALSE  
350 50 72151 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
351 58 21643 TRUE FALSE 15 TRUE FALSE FALSE FALSE FALSE  
352 58 71201 TRUE FALSE 17 TRUE FALSE FALSE FALSE FALSE  
353 74 11927 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
354 68 30932 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
355 47 80701 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
356 37 40364 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
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357 65 70836 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE  
358 38 61163 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
359 58 20643 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
360 52 91548 TRUE FALSE 14 FALSE FALSE FALSE TRUE FALSE  
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361 30 92876 TRUE FALSE 15 FALSE TRUE FALSE FALSE FALSE  
362 21 101179 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
363 36 110564 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
364 46 62855 FALSE TRUE 15 TRUE FALSE FALSE FALSE FALSE  
365 24 71877 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
366 19 21782 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
367 32 20769 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
368 35 100665 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
369 19 11 TRUE FALSE 11 TRUE FALSE FALSE FALSE FALSE  
370 50 12051 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
371 49 41052 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
372 58 90342 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
373 50 102350 FALSE TRUE 15 TRUE FALSE FALSE FALSE FALSE  
374 42 11059 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
375 41 62060 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
376 44 80757 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
377 54 81101 FALSE TRUE 13 TRUE FALSE FALSE FALSE FALSE  
378 26 41175 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
379 38 10763 TRUE FALSE 18 TRUE FALSE FALSE FALSE FALSE  
380 20 72081 TRUE FALSE 13 TRUE FALSE FALSE FALSE FALSE  
381 42 111058 FALSE TRUE 13 TRUE FALSE FALSE FALSE FALSE  
382 45 81555 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
383 20 82480 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
384 53 102447 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
385 53 33048 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
386 49 80652 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
387 23 122977 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
388 27 102473 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
389 48 111052 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
390 28 101172 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
391 20 112980 TRUE FALSE 20 TRUE FALSE FALSE FALSE FALSE  
392 20 71181 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
393 23 51578 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
394 69 61332 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
395 22 61579 TRUE FALSE 15 TRUE FALSE FALSE FALSE FALSE  

Manchester, NH 
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396 29 110571 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
397 38 90362 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
398 40 80561 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
399 42 111358 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
400 23 100978 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
401 54 92546 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
402 18 51683 TRUE FALSE 11 TRUE FALSE FALSE FALSE FALSE  
403 18 70783 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
404 33 42568 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
405 25 31676 FALSE TRUE 12 FALSE TRUE FALSE FALSE FALSE  
406 31 111769 TRUE FALSE 12 FALSE TRUE FALSE FALSE FALSE  
407 51 30250 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
408 18 10983 TRUE FALSE 10 TRUE FALSE FALSE FALSE FALSE  
409 44 70457 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
410 29 60272 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
411 20 11881 FALSE TRUE 12 FALSE TRUE FALSE FALSE FALSE  
412 24 50777 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
413 31 40970 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
414 30 0 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
415 24 32277 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
416 20 102780 FALSE TRUE 12 FALSE TRUE FALSE FALSE FALSE  
417 52 50449 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
418 32 122568 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
419 31 50170 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE  
420 31 22570 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
421 40 120561 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
422 51 81649 TRUE FALSE 12 TRUE TRUE FALSE FALSE FALSE  
423 37 110263 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
424 43 121559 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
425 28 102972 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
426 18 22883 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
427 23 52378 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
428 32 70169 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
429 47 81354 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
430 20 81881 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
431 60 51541 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
432 50 81451 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
433 19 101381 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
434 29 112771 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
436 48 90952 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
437 46 72555 TRUE FALSE 13 TRUE FALSE FALSE FALSE FALSE  
438 50 71651 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
439 45 52756 FALSE TRUE 13 TRUE FALSE FALSE FALSE FALSE  
435 33 100267 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
440 65 81536 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
441 20 91580 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
442 25 61276 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
443 44 102256 FALSE TRUE 20 TRUE FALSE FALSE FALSE FALSE  
444 22 80279 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
445 42 110558 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
446 27 92573 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
447 39 32762 TRUE FALSE 20 TRUE FALSE FALSE FALSE FALSE  
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448 18 22483 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
449 18 122782 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
450 52 80849 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
451 37 31964 FALSE TRUE 16 FALSE FALSE FALSE FALSE FALSE  
452 26 80575 TRUE FALSE 15 TRUE FALSE FALSE FALSE FALSE  
453 50 40551 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
454 26 20675 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
455 50 22551 TRUE FALSE 18 TRUE FALSE FALSE FALSE FALSE  
456 30 60871 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
457 44 22857 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
458 44 92856 FALSE TRUE 13 TRUE FALSE FALSE FALSE FALSE  
459 24 80277 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
460 44 12456 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
461 38 60163 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
462 28 41573 TRUE FALSE 15 TRUE FALSE FALSE FALSE FALSE  
463 48 60153 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
464 40 102960 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
465 41 92859 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
466 46 111454 FALSE TRUE 13 TRUE FALSE FALSE FALSE FALSE  
467 51 111549 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE  
468 31 20170 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE  
469 32 40468 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE  
470 44 51557 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
471 45 71856 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
472 26 83001 FALSE TRUE 17 TRUE FALSE FALSE FALSE FALSE  
473 51 52650 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE  
474 45 111555 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE  
475 49 102151 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
476 54 11347 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
477 40 30461 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE  
478 40 20561 TRUE FALSE 17 TRUE FALSE FALSE FALSE FALSE  
479 46 12355 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE  
480 29 111071 TRUE FALSE 10 TRUE FALSE FALSE FALSE FALSE  
481 31  TRUE FALSE 9 TRUE FALSE FALSE FALSE FALSE  
482 32 20969 TRUE FALSE TRUE FALSE FALSE FALSE FALSE  
483 40 20861 TRUE FALSE 15 TRUE FALSE FALSE FALSE FALSE  
484 42 61054 TRUE FALSE 19 TRUE FALSE FALSE FALSE FALSE  
485 36 101165 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE  
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486 43 22058 FALSE TRUE 12 FALSE FALSE FALSE TRUE FALSE 
487 36 22265 TRUE FALSE 14 FALSE FALSE FALSE TRUE FALSE 
488 35 41166 TRUE FALSE 16 FALSE FALSE FALSE TRUE FALSE 
489 38 91562 FALSE TRUE 16 FALSE FALSE FALSE TRUE FALSE 
490 22 80179 FALSE TRUE 15 FALSE FALSE FALSE TRUE FALSE 
491 26 11575 FALSE TRUE 16 FALSE FALSE FALSE TRUE FALSE 
492 29 62372 TRUE FALSE 15 TRUE FALSE FALSE FALSE FALSE 
493 25 32676 TRUE FALSE 14 FALSE FALSE FALSE TRUE FALSE 
494 20 82781 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
495 19 90882 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
496 22 111378 FALSE TRUE 12 FALSE FALSE FALSE TRUE FALSE 
497 29 61572 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE 
498 43 102657 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
499 69 112331 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE 
500 53 11448 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
501 42 81959 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
502 19 20282 FALSE TRUE 13 FALSE FALSE FALSE TRUE FALSE 
503 25 41976 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
504 34 91566 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE 
505 21 42880 FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE 
506 29 70474 FALSE TRUE 13 FALSE FALSE FALSE TRUE FALSE 
507 25 120875 TRUE FALSE 13 FALSE FALSE FALSE TRUE FALSE 
508 43 31658 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
509 46 30455 FALSE TRUE 14.5 TRUE FALSE FALSE FALSE FALES 
510 35 80366 TRUE FLASE 16 TRUE FALSE FALSE FALSE FALSE 
511 35 61666 TRUE FALSE 18 TRUE FALSE FALSE FALSE FALSE 
512 45 82056 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
513 43 100457 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
514 48 81653 TRUE FALSE 24 TRUE FALSE FALSE FALSE FALSE 
515 20 50781 TRUE FALSE 12 FALSE FALSE FALSE FALSE FALSE TRUE 
516 21 42780 TRUE FALSE TRUE FALSE FALSE FALSE FALSE 
517 31 20770 FALSE TRUE 13 TRUE FALSE FALSE FALSE FALSE 

Savannah, GA 



CU-Move Release 2.0B Documentation  Page 42 of 46 

 
 
 
 
Spea
ker 
ID 

Num
ber 

Age Date of 
Birth 

Male Female Edu
catio

n 

White/Cau
casion 

Native 
America
n/Native 
Alaskan

Asian/Paci
fic 

Islander 

African-
America

n 

Mexican-
American/

Latino 

Ethnicity 
(specific)

519 32 61169 TRUE FALSE 4 FALSE FALSE FALSE TRUE FALSE 
520 22 100678 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
521 54 102246 FALSE TRUE 13.5 TRUE FALSE FALSE FALSE FALSE 
522 32 103168 FALSE TRUE 12 FALSE FALSE FALSE TRUE FALSE 
523 22 120678 FALSE TRUE 14 FALSE FALSE FALSE TRUE FALSE 
524 37 102263 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
525 62 51239 TRUE FALSE TRUE FALSE FALSE FALSE FALSE 
526 39 91562 FALSE TRUE 14 FALSE FALSE FALSE FALSE TRUE 
527 32 82569 FALSE TRUE 12 FALSE FALSE FALSE TRUE FALSE 
528 33 12868 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE 
529 58 42243 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
530 37 102463 FALSE TRUE 15 FALSE FALSE FALSE TRUE FALSE 
531 65 101735 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
532 21 112679 FALSE TRUE 15 TRUE FALSE FALSE FALSE FALSE 
533 26 90775 TRUE FALSE 13 FALSE FALSE FALSE TRUE FALSE 
534 53 82148 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
535 60 82341 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
536 37 53164 TRUE FALSE 15 TRUE FALSE FALSE FALSE FALSE 
537 39 121861 FALSE TRUE 13 FALSE FALSE FALSE TRUE FALSE 
538 18 42983 TRUE FALSE 12 TRUE FALSE FALSE FALSE FALSE 
539 64 90537 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE 
540 38 20863 FALSE TRUE 13.5 TRUE FALSE FALSE FALSE FALSE 
541 36 100664 FALSE TRUE 16 FALSE FALSE FALSE TRUE FALSE 
542 48  FALSE TRUE 13 TRUE FALSE FALSE FALSE FALSE 
543 58 101042 TRUE FLASE 16 TRUE FALSE FALSE FALSE FALSE 
544 40 52861 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE 
545 45   FALSE TRUE 12 TRUE FALSE FALSE FALSE FALSE 
546 66 92035 TRUE FALSE 14.5 TRUE FALSE FALSE FALSE FALSE 
547 43 30359 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
548 25 10876 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 

 

Dallas, TX 
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1 28 60473 TRUE FALSE 18 FALSE FALSE TRUE FALSE FALSE 
2 29 91071 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
3 24 71076 TRUE FALSE 18 TRUE FALSE FALSE FALSE FALSE 
4 31 62869 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE 
5 27 111573 FALSE TRUE 19 TRUE FALSE FALSE FALSE FALSE 
6 25 10776 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
7 24 70576 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
8 29 91071 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
9 49 91251 FALSE TRUE 19 TRUE FALSE FALSE FALSE FALSE 

10 24 101576 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE 
11 66 81734 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE 
12 27 100573 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
13 70 120430 TRUE FALSE 20 TRUE FALSE FALSE FALSE FALSE 
14 41 32160 FALSE TRUE 16 FALSE FALSE FALSE FALSE TRUE 
15 20 30681 TRUE FALSE 14 TRUE FALSE FALSE FALSE FALSE 
16 22 10279 FALSE TRUE 15 TRUE FALSE FALSE FALSE FALSE 
17 46 111154 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE 
18 31 72369 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE 
19 21 22280 TRUE FALSE 15 TRUE FALSE FALSE FALSE FALSE 
20 29 92971 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE 
21 50 110750 FALSE TRUE 17 TRUE FALSE FALSE FALSE FALSE 
22 29 62771 FALSE TRUE 16 TRUE FALSE FALSE FALSE FALSE 
23 46 110354 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
24 61 40340 FALSE TRUE 14 TRUE FALSE FALSE FALSE FALSE 
25 45 91254 TRUE FALSE 16 FALSE FALSE FALSE FALSE TRUE 
26 72 70728 FALSE TRUE 18 TRUE FALSE FALSE FALSE FALSE 
27 49 53051 TRUE FALSE 16 TRUE FALSE FALSE FALSE FALSE 
28 21 62379 TRUE FALSE 16 FALSE FALSE TRUE FALSE FALSE 

 

Boulder, CO 
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CU-Move Project Participants: 
The CU-Move project has received significant support from DARPA under the Communicator 
Program. We have also received support from a number of industry sponsors including HRL and 
Motorola, which has been instrumental during the data collection efforts. Below, we summarize 
the personnel involved with the CU-Move project (space limitations prevent listing all the 
contributions from the CSLR team over the past 2 years). 
 
             John H.L. Hansen CU-Move  Principal Investigator  
             Wayne H. Ward (dialog research, speech recognition) 
             Bryan Pellom  (dialog research, speech synthesis, speech recognition)  
           Xianxian Zhang (corpus processing and organization) 

 Murat Akbacak (noise analysis and modeling) 
 Mandar Rahurkar (corpus transcription support) 

             Jay Plucienkowski (speech enhancement, beamforming research, hardware) 
             Stephen Gallant (microphone array development, corpus hardware support) 
             Ruhi Sarikaya  (speech recognizer model adaptation - environmental noise)  
             Umit Yapanel  (speech recognizer model adaptation - environmental noise) 
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Release History: 
 
Release 1.0A Jan. 22, 2002    

Contains 153 speakers, Minn., MN 
Release 1.1A March 13, 2002     

Update includes additional Cell Phone Data that was collected simultaneously at CSLR 
during WOZ dialog portion.  Also includes Route Scenarios from Minn., MN (shows to-
and-from destinations used for travel in that city). 

Release 2.0A  November 8, 2002 
Update includes train, dev-test, test  set information, extensive speaker information, data 
from St. Louis, Manchester, Boulder, Dallas, Savannah, and noise analysis results of 
vehicle. 

Release 2.0B  March 4, 2005 
Includes copies of paper reprints which have employed the CU-Move corpus, as well as a 
summary of those groups which have purchase the CU-Move Corpus License.  
 

Groups which have the CU-Move Corpus:  
 

• Siemens: CU-Move In-Vehicle Speech Corpus, 2005 
• IBM T.J. Watson Research Center: CU-Move In-Vehicle Speech Corpus, 2004 
• Motorola Corporation: Wireless Research Group: CU-Move In-Vehicle Speech Corpus, 2001-3 
• Panasonic/STL: CU-Move In-Vehicle Speech Corpus, 2002 
• Mishubishi (MERL): CU-Move In-Vehicle Speech Corpus, 2002 
• Infinitive Speech Systems: CU-Move In-Vehicle Speech Corpus, 2002 
• Voice Signal Technologies: CU-Move In-Vehicle Speech Corpus, 2002 
• HRL Laboratory : CSLR Center Membership  – CU-Move In-Vehicle Research, 2001-2002 
• SpeechWorks: CU-Move In-Vehicle Speech Corpus, 2001 
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MOVE: Advanced In-Vehicle Speech Systems for Route Navigation," Chapter 2 in DSP for In-Vehicle and 
Mobile Systems, Springer-Verlag Publishers, 2004. 
Journal Papers: 
[3] X. Zhang, J.H.L. Hansen, "CSA-BF: A Constrained Switched Adaptive Beamformer for Speech 
Enhancement and Recognition in Real Car Environments," IEEE Trans. Speech & Audio Proc., vol. 11, no. 
6, pp. 733-745, Nov. 2003. 
Conference Papers: 
[4] X.X. Zhang, J.H.L. Hansen, K. Arehart, J. Rossi-Katz, "In-Vehicle Based Speech Processing for 
Hearing Impaired Subjects," Interspeech-2004/ICSLP-2004: Inter. Conf. Spoken Language Processing, pp. 
WeA1101o.3(1-4), Jeju Island, South Korea, Oct. 2004. 
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[8] U. Yapanel, J.H.L. Hansen, "A New Perspective on Feature Extraction for Robust In-Vehicle Speech 
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[12] J.H.L. Hansen, X. Zhang, M. Akbacak ,U. Yapanel, B. Pellom, W. Ward, "CU-Move: Advances in In-
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paper 6.5 (pp. 1-6), Nagoya, Japan, April 4-5, 2003. 
[13] U. Yapanel, X. Zhang, J.H.L. Hansen, "High Performance Digit Recognition In Real Car 
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Abstract 
Among a number of studies which have investigated various 
speech enhancement and processing schemes for in-vehicle 
speech systems, the delay-and-sum beamforming (DASB) and 
adaptive beamforming are two typical methods that both have 
their advantages and disadvantages. In this paper, we propose 
a novel combined fixed/adaptive beamforming solution (CFA-
BF) based on previous work for speech enhancement and 
recognition in real moving car environments, which seeks to 
take advantage of both methods. The working scheme of CFA-
BF consists of two steps: source location calibration and target 
signal enhancement. The first step is to pre-record the transfer 
functions between speaker and microphone array from 
different potential source positions using adaptive 
beamforming under quiet environments; and the second step is 
to use this pre-recorded information to enhance the desired 
speech when the car is running on the road. An evaluation 
using extensive actual car speech data from the CU-Move 
Corpus shows that the method can decrease WER for speech 
recognition by up to 30% over a single channel scenario. 

1. Introduction 
The increased use of mobile telephones in cars has created a 
greater demand for hands-free, in-car installations. Many 
countries now restrict the use of hand-held cellular technology 
while operating a vehicle. As such, there is a greater need to 
have reliable voice capture within automobile environments. 
However, the distance between a hands-free car microphone 
and the speaker will cause a severe loss in speech quality due 
to changing acoustic environments. Therefore, the topic of 
capturing clean and distortion-free speech under distant talker 
conditions in noisy car environments has attracted much 
attention. Microphone array processing and beamforming is 
one promising area which can yield effective performance.  

A number of beamforming methods which are suitable for 
speech enhancement and recognition in car environments 
have been proposed in the past. In a study by Nordholm, et. al 
[1], they formulate a simple built-in calibration procedure for 
data collection instrumentation in the car environment. Their 
working scheme is to find the transfer function among the 
speaker, jammer signal, and microphone array in a quiet 
setting, and assume this function does not change when the 
car is moving on the road. This algorithm is one of several 
typical beamforming algorithms that have been used in car 
environments. However, from our analysis using real car data 
we collected, we found that different drivers position their 
heads differently, and this will result in deviations in the 
transfer function between the speaker and microphone. In 
another study, Compernolle [2] presented an approach using 
switching adaptive filters, with no a priori knowledge about 

the speech source. The filters have two sections, where the 
first section implements an adaptive look direction and cues in 
on the desired speech, while the second section acts as a 
multi-channel adaptive noise canceller. This method is able to 
simultaneously track the movement of the speaker source and 
compensate for the transfer function between the microphone 
array and speaker in real-time. This study represents an 
important step forward for in-car speech applications. Another 
study by Oh, et. al [3] applied a Griffiths-Jim beamformer in a 
car environment with a 7-channel microphone array. They 
evaluated Signal-to-noise ratio (SNR) and word-error-rate 
(WER) improvement of their algorithm, and compared this to 
the case when only Delay-and-sum beamforming (DASB) is 
used. Their general recommendations were that the 
generalized side-lobe canceller (GSC) was relatively stable 
and robust. However, from our analysis using real car data we 
collected, we found that noise signals with high frequency 
energy, such as road bump noise, which routinely happens for 
road surface repairs of potholes or expansion joints across 
bridges, will make the GSC unstable. Zhang and Hansen [4] 
proposed a method to identify this kind of noise and thereby 
allow the adaptive filters to work more robustly. In a study by 
Shinde, Takeda and Itakura [5], they presented a multichannel 
method for noisy speech recognition which estimates the log 
spectrum of speech for a close-talking microphone based on a 
multiple regression of the log spectra (MRLS) of noisy signals 
captured by the distributed microphones. This method was 
reported to improve speech recognition performance by up to 
20%, but it requires a specific microphone arrangement in the 
car. It should also be noted that the noise signals captured by 
distributed microphones within the car are not necessarily the 
real noise that reaches the close-talking microphone. Visser, 
Otsuka and Lee [6], presented a speech enhancement scheme 
which combined a spatial and temporal processing strategy to 
handle reverberation, highly interfering sources and 
background noise without the need of microphone arrays nor 
a priori speech or noise models. These methods were reported 
to have good performance under a single controlled driving 
condition (i.e., windows closed traveling at a given speed).  

While a number of studies have investigated various 
speech enhancement and processing schemes for in-vehicle 
speech systems, the majority of results are conducted under 
controlled simulated conditions inside a room or with pre-
recorded car noise. Little research has been performed using 
actual voice data collected in the car with associated 
environmental noise conditions. Because of the variety of 
simulated in-vehicle evaluation scenarios, it is difficult to 
compare performance between studies, and to predict if 
simulated performance will hold for actual, in-vehicle 
conditions. In Zhang and Hansen [4], an analysis was 
performed on data recorded in various car noise environments 
from across the United States. There, we proposed a 
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constrained switched adaptive beamforming algorithm (CSA-
BF), which detects the head movement of the driver and 
adjusts the time delay between microphones automatically. 
That method was shown to decrease WER (Word Error Rate) 
for speech recognition by up to 31% and improve speech 
quality by up to 5.5dB on the average simultaneously, using 
the CU-Move corpus [7].  

In this paper, we first analyze potential driver movement 
during voice interaction by selecting ten-speakers from the 
CU-Move corpus [7,8], then propose a combined 
fixed/adaptive beamforming (CFA-BF) scheme designed 
specially for robust speech recognition in car noise 
environments. Our proposed method combines fixed and 
adaptive beamforming and also applies source localization 
techniques. Therefore, it has the following advantages. �  Low computational complexity with robustness; �  Target signal distortion reduction by omitting the 

parameter adjustment in adaptive filters; �  Automatically tracking driver movement, and no speech 
range definition is needed; �  Directional sources can be suppressed;  �  Especially suitable for use in car noise environments. 

2. Prior CSA-BF Beamforming Algorithm  
The CSA-BF algorithm consists of a speech/noise constraint 
section (CS), a speech adaptive beamformer (SA-BF), and a 
noise adaptive beamformer (NA-BF). A speech range is 
defined and judged in the constraint section. The desired 
speech signal is enhanced by the speech beamformer, and 
noise is suppressed by the noise beamformer. A set of 
adaptive filters are used to perform the beam steering. Also, a 
normalized LMS algorithm is used to update the filter 
coefficients. The most novel advantage of CSA-BF method is 
that source movement can be tracked and directional sources 
can be suppressed with reduced target signal distortion. 
However, the adaptive filters used in CSA-BF increase the 
computation complexity greatly, which limits the 
implementation of CSA-BF algorithm in real-time. Another 
disadvantage of CSA-BF is the sensitivity of parameter setting 
for the adaptive filters. From the experiment results in [4], we 
know that if the optimal parameter settings for CSA-BF are 
altered slightly, the WER degrades slightly because of speech 
leakage. A comparison with DASB was also performed. 
Compared with adaptive beamforming, the computation 
complexity of DASB is quite low. However, DASB will lose 
accuracy in estimating the time delay if the driver’s physical 
position changes significantly.    

3. Source Location Analysis In Real Car 
Environments 

In order to analyze the movement of the driver’s head in the 
car during voice interaction, we selected 10 speakers from the 
CU-Move database [7, 8] that are balanced across gender and 
age.  Next we use the TEO criterion described in [4] to decide 
the speech period for each of the 10 speakers and apply the 
adaptive LMS filter technique [9] to locate the position of the 
head of each speaker (source). Table 1 shows the entire 
recording time for each speaker and the percentage (%) of 
time each speaker’s head stays in a certain position. 
 

Speaker Number Po
si-
tio 1 2 3 4 5 6 7 8 9 10 

Amount of time in minutes for recording n 
No

5.6 8.2 7.4 8.1 8.2 7.4 6.5 6.1 6.6 6.4 

0 39 57 1   8 14  2  
1 36     50 82  80  
2 4 9   5 17 2  8 55 
3  .1   14 18  67 3 38 
4     .5 4   .4  
5  2   .2 .4   .5  
6  .3  1 .3    .1  
7    66  .2     
8    10  .4     
-1 2  91     1   
-2   8        
-8    1       

unkn
own 19 32 0 22 80 3 2 32 6 7 

Table 1: Percentage Time Of Each Speaker Source Location 
Over CU-Move In-vehicle Recording  

(i.e., Speaker 1 spends 39% of his total 5.6 minutes of speech 
in digits portion with head position 0 from Fig. 1) 

Fig. 1 shows the position number in Table 1 corresponding to 
the source angle to the axis of the microphone array during 
the recording.  

�

�
position number corresponding

0 0

2 5.6o
1 2.8o

3 8.4o

4 11.2o

5 14o

6 16.8o

7 19.6o

8 22.4o

-1 -2.8o

-2 -5.6o

unknown unknown

�

��
 

Fig. 1:  Relation Between Position Number and Angle of 
Source 

From this table, we find that even during no more than 9 
minutes of voice recording, the driver will change his head 
position often. Fortunately, for each speaker, we can always 
find a dominant position. The reason we have some unknown 
positions is that the source location technique we employ at 
times cannot make a reliable decision as to the current source 
location. This may happen when the noise level is very high, 
the noise changes too fast, and/or the step-size of the filter is 
too large. This is actually a common situation for in-vehicle 
systems because of the complex noise situations, and the 
limitations of the adaptive LMS filter technique. This also is a 
motivation for the proposed CFA-BF algorithm. 

4. CFA-BF: Combined Fixed/Adaptive 
Beamforming 

In this proposed method, we assume that if the source position 
(driver’s head) does not change, then the transfer function 
between the speaker and microphone array in a quiet setting 
will not change if the car is moving on the road. So, we find 
the transfer function between the speaker and microphone 
array for different possible source positions when the car is in 
a quiet environment (for example, parking plot), and pre-store 
them for later use when the car is driven on the road. 



 
Fig. 2: Working Scheme for the Proposed CFA-BF 

4.1. Source Location Calibration – Adaptive Beamforming 

As is well known, an adaptive algorithm such as normalized 
Least Mean Square algorithm (NLMS) can more easily to 
reach its convergence behavior in quiet or stationary noise 
environments, than under non-stationary noise environments 
(for example, car noise environments). Also, from source 
location analysis of CU-Move Corpus in Sec. 3, we know that 
although different drivers will move their heads in different 
positions, almost all of them keep themselves in one position 
more than 50% of the time. Thus, we can study possible 
positions which the driver’ s head can reach inside a car, and 
then apply the previous developed CSA-BF [4] to pre-record 
the weight coefficients of the adaptive filters in speech 
adaptive beamforming (SA-BF) from all the possible source 
positions in a quiet environment. Fig. 2 is the working scheme 
of the source calibration procedure. Here, we only show 3 
positions. A normalized LMS algorithm is used to update the 
filter coefficients, and the update equations are given as 
follows: 
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The coefficients stored in the bank of weights impliment the 
transfer functions between the microphone array and the 
speaker in different positions respectively. They also reflect 
the relative delays between microphones. Fig. 3 shows how 
the SA-BF operates.  

4.2. Target Signal Enhancement – Fixed Beamforming 

Fig. 4 shows the working scheme of the target speech 
enhancement. At this point, we have the transfer functions 
from the speaker in different positions, (i.e., weight 
coefficients ( ],,,[ 15141312






WWWW ).With the help of a source 

localization technique, we find the source position first and 
then extract the corresponding weight coefficient bank from 
the pre-recorded weights and use them in this section.  
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Fig 3: Structure of Speech Adaptive Beamformer (SA-BF) 
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Fig. 4: Structure of Fixed Beamforming for Target Signal 

Enhancement 
With this procedure, the enhanced speech will be given as 
follows: 
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where ],,,[ 15141312 WWWW  are functions of the angle between 

the source and axis of the microphone array � , and 
11W is a 

pure delay which is half of the filter length (i.e., L/2). 

5. Performance Evaluation 

5.1. CU-Move Corpus 

The CU-Move [8] database includes 5 parts: command and 
control words, digit strings of telephone and credit card 
numbers, street names and addresses, phonetically balanced 
sentences, and Wizard of Oz interactive navigation 
conversation. A total of 500 speakers, balanced across gender 
and age, produced over 600GB of data during a six-month 
collection effort across the United States. The database and 
noise conditions are discussed in detail in [7]. We point out 
that the noise conditions are changing with time and are quite 
different in terms of SNR, stationarity and spectral structure. 
In this study, we chose 10 speakers from approximately 100 
speakers in Minn., MN (i.e., Release 1.1A) and use the digits 
portion that includes speech under a range of varying complex 
car noise environments and contains approximately 40 words. 

5.2. Experiment Establishment 

For the proposed CFA-BF algorithm, careful calibration of 
the weight coefficients and the source location decision have 
significant impact on the performance of the algorithm. In 
order to evaluate the performance of the CFA-BF under the 
non-ideal calibration and source location process, we 
establish experiments as follows: 

�  Use CSA-BF to process each of the ten speakers 
respectively; the constraint we use here is the TEO 
criterion described in [1] only; 

�  Store the weight coefficient set of the speech beamformer 
(SA-BF) which has the dominant source position, and 
choose the best from this set as the calibrated weight set 
for SA-BF for this speaker.  

�  Use the calibrated weight set to re-process the data for 
this speaker (i.e., delay-and-sum). 

If CFA-BF can perform better result DASB and SA-BF under 
this established experiment, it will operate much better than in 
ideal experimental conditions. We have shown in [4] that with 
noise cancellation processing activated, both SEGSNR and 
WER results can be improved compared with SA-BF. In this 
study, we disable the cancellation processor, since if the 
speech quality (i.e., one of the outputs of SA-BF, which is 
used as the reference for noise cancellation processor) is 
improved, the output of GSC will also be improved.  

position -1 
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Speech 
Adaptive 
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5.3. Evaluations 

For evaluation, we consider two different performance 
measures using CU-Move data. One measure is the Segmental 
Signal-to-Noise Ratio (SEGSNR)[10] which represents a noise 
reduction criterion for voice communications. The second 
performance measure is Word Error Rate (WER) reduction, 
which reflects benefits for speech recognition applications. 
The Sonic Recognizer [11] is used to investigate speech 
recognition performance. Since the size of the processed data 
is not large enough for recognizer evaluation, therefore, we 
adopted the cross-validation method from [12]. 

5.4. Experiments Results 

Fig. 5 shows the SEGSNR results for reference single 
channel3, DASB, SA-BF, and proposed CFA-BF.  
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Fig. 5: SEGSNR Performance for Ref. 3 Microphone and 
different Beamforming Scenarios 

Table 2 shows average SEGSNR improvement, average WER 
(Word Error Rate), CORR (Word Correct Rate), SUB (Word 
Substitution Rate), DEL (Word Deletion Rate) and INS 
(Word Insertion Rate) for the 10 speakers.  
        method 
measure Chan3 DASB SA-BF CFA-BF 

Ave. (dB) 
SEGSNR 10.77 10.58 10.7 11.34 

WER 10.71 8.28 7.98 7.51 
SUB 4.76 3.9 3.76 3.51 
DEL 4.75 2.35 3.88 2.19 
INS 3 3.11 3.16 2.96 

CORR 92.28 94.83 95.19 95.46 
 
Table 2: Average SEGSNR, WER, CORR, SUB, DEL and INS 

for Ref. 3 Microphone and Beamforming Scenarios 
Fig. 6 illustrate average SEGSNR improvement and WER 
speech recognition performance results respectively. The 
average SEGSNR results are indicated by the bars using the 
left-side vertical scale (dB), and the WER improvement is the 
solid line using the right-side scale (%). 
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Fig. 6: SEGSNR and WER Results for Ref. 3 Microphone and 

Beamforming Scenarios Using CU-Move 10 Speakers 

From these results, we make the following observations: 
(i.) Employing the proposed combined fixed/adaptive 

beamforming method, increases SEGSNR slightly, but 
some variability exists across speakers.  

(ii.) However, DASB, SA-BF and the proposed method can 
provide WER improvement by 22.8%, 25.6% and 29.9% 
respectively over a single microphone (i.e., channel 3). 

6. Conclusions and Future Work 
In this paper, we have proposed a novel combined 
fixed/adaptive beamforming method (CFA-BF) for robust 
speech recognition in real car environments based on 
experiments using voice data recorded in moving car 
environments. We demonstrated that the CFA-BF can 
improve SEGSNR slightly, and improve speech recognition 
performance by decreasing WER by 29.3% using CU-Move 
in-vehicle speech data. We have shown that this method 
outperforms a single channel microphone (channel 3), 
traditional delay-and-sum beamforming and our previous 
speech adaptive beamformer (SA-BF).  
However, there remain some issues to address for future work: �  Perform source localization calibration in a quiet 

environment, such as parking plot, and use a larger 
portion of the CU-Move Corpus to evaluate the 
performance of CFA-BF; �  Improve the accuracy of source localization by applying 
alternative source localization techniques, such as CSP 
(cross-power spectrum technique), and decrease the 
percentage of unknown positions. �  Activate the GSC noise canceller processor after signal 
enhancement, and improve the SEGSNR performance 
without affecting WER improvement. 
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ABSTRACT

In this paper, we propose a framework for extracting knowledge
concerning environmental noise from an input audio sequence and
organizing this knowledge for use by other speech systems. To
date, most approaches dealing with environmental noise in speech
systems are based on assumptions concerning the noise, or dif-
ferences in collecting and training on a specific noise condition,
rather than exploring the nature of the noise. We are interested
in constructing a new speech framework entitled Environmental
Sniffing to detect, classify and track acoustic environmental con-
ditions. The first goal of the framework is to seek out detailed
information about the environmental characteristics instead of just
detecting environmental changes. The second goal is to organize
this knowledge in an effective manner to allow smart decisions to
direct other speech systems. Our current framework uses a number
of speech processing modules including the Teager Energy Op-
erator (TEO) and a hybrid algorithm with T 2-BIC segmentation,
noise language modeling and GMM classification in noise knowl-
edge estimation. We define a new information criterion that incor-
porates impact of noise into Environmental Sniffing performance.
We use an in-vehicle speech and noise environment as a test plat-
form for our evaluations and investigate the integration of Envi-
ronmental Sniffing into an Automatic Speech Recognition (ASR)
engine in this environment. Noise classification experiments show
that the hybrid algorithm achieves an error rate of 25.51 % , out-
performing a baseline system by a relative 7.08%.

1. INTRODUCTION
Significant advances in speech technology have been achieved in
applications where the environmental condition is constant. Most
recently, research focus has shifted to the real-world environments
where changing environmental conditions represent significant chal-
lenges in maintaining speech system performance.

This problem has been taken into consideration especially in
ASR applications since the recognition performance degrades sub-
stantially due to changes in the environment. One of the first
ASR tasks that have changing environmental conditions is for au-
tomatic transcription of “Broadcast News” (BN). Several research
groups have worked on this task to increase recognition perfor-
mance. These studies [1, 2] have the underlying goal of training
for acoustic conditions that are specific for each system (speech
conditions include : F0- prepared, F1- spontaneous,F2- degraded
acoustics, F3- music background, F4- noise background, F5- non-
native speakers, and FX- other speech) and directing the ASR en-

This work was supported in part by DARPA under Grant No. N66001-
8906 and NSF Cooperative Agreement No. IIS-9817485

gine to a single recognizer for each acoustic condition. The down-
side of this method is that it tries to model many different kinds of
environmental conditions with a single model, with the hope that
such a background noise model would be able to capture this huge
variability.

Later, as computational power has increased with the help of
high-speed computers, a parallel bank of recognizers has been
used in a ROVER paradigm for tasks such as Speech In Noisy En-
vironments (SPINE) where many different environmental condi-
tions exist. Different recognizers intentionally employing a range
of feature processing or adaptation methods are normal for a
ROVER based LVCSR solution. This may involve different fea-
tures during the feature extraction step, different noise compensa-
tion schemes in the enhancement step, or different model adapta-
tion schemes individually or in parallel. Finally, the hypothesis
with the highest probability at the output of the decoders is cho-
sen as the final decision of the ROVER. Although significant im-
provement has been achieved using the ROVER paradigm, it is not
optimal in terms of computational performance. It is also highly
possible that one recognizer may not have the highest probability
at all times during decoding, implying that the selected recognizer
may be the best in a global sense but not in a local sense.

To overcome the disadvantages of these methods as well as
to have acceptable error rates in ASR systems in changing envi-
ronmental conditions, we propose a new speech framework called
Environmental Sniffing. The goal will be to do smart tracking of
environmental conditions and direct the ASR engine to use the best
local solution specific to each environmental condition. For ex-
ample, instead of running parallel feature extractors in a ROVER
paradigm, the Environmental Sniffing framework will direct the
ASR engine to use only one feature extractor which gives the best
performance for a specific environmental condition. In this way,
we optimize both the computational effort and overall system per-
formance of the ASR.

On the other hand, Environmental Sniffing is also useful for
automatic transcription of noise where the accuracy is much lower
than that of transcription of speech. Considering the fact that there
are no standards for noise transcription in audio material, it is crit-
ical to automatically transcribe environmental noise with high ac-
curacy for more effective speech system training.

The organization of our paper is as follows. In Section 2,
a general system architecture for Environmental Sniffing is pre-
sented. In Section 3, we specialize the general framework for
sniffing environmental noise for in-vehicle systems. In Section 4,
evaluations of the framework integrated into an in-vehicle ASR en-
gine is presented. Section 5 discusses some further research issues
for sniffing. Conclusion is given in Section 6.
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Fig. 1. Environmental Sniffing system architecture diagram.

2. SYSTEM ARCHITECTURE

Environmental Sniffing can be integrated into any speech task hav-
ing some degree of concern about acoustic environmental condi-
tions. Environmental Sniffing extracts knowledge about the acous-
tic environmental conditions and passes this knowledge to the
speech task. A proposed general system architecture diagram is
shown in Fig. 1. Digitized speech is denoted as s(n), captured
from an input sensor (i.e., single or multi-microphone) and acous-
tic environmental noise knowledge as I(n) which is a function of
s(n). In a sample scenario, s(n) may be the audio data recorded
in a vehicle with a microphone array, the speech task may in-
clude model adaptation within an ASR system, and I(n) may
consist of the existing noise types with time tags and the power
spectral estimates of the environmental noise with a stationarity
measure. Here, I(n) may also contain a suggestion to use one
of several adaptation schemes (Jacobian adaptation, MLLR, PMC,
etc.) which gives the best performance for the environmental noise
knowledge estimated through Environmental Sniffing.

3. IN-VEHICLE ENVIRONMENTAL SNIFFING

Within the framework of Environmental Sniffing from Fig. 1, we
specialize our solution for an in-vehicle hands-free car navigation
environment. The motivation for selecting this environment is the
huge diversity of acoustic environmental conditions and the need
to maintain near real-time performance for route navigation di-
alogs [3].
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Fig. 2. Scatter plot of low (0-1.5 kHz) versus high (1.5-4 kHz)
frequency noise dB-energy content for noises N1 through N7.

Having collected in-vehicle acoustic data (i.e., in a Blazer SUV)
using a 17 mile route which contains samples of all driving con-
ditions expected for use in city and rural areas, we identified the
primary noise conditions of interest (noise conditions include: N1-
idle noise consisting of the engine running with no movement

and windows closed, N2- city driving without traffic and win-
dows closed, N3- city driving with traffic and windows closed,
N4- highway driving with windows closed, N5- highway driving
with windows 2 inches open, N6- highway driving with windows
half-way down, N7- windows 2 inches open in city traffic, N0-
others), which are considered as long term acoustic environmen-
tal conditions. Other acoustic conditions (idle position with air-
conditioning on, etc.) are matched to these primary classes having
the closest acoustic characteristic. Fig. 2 shows the average power
spectrum density for low (0-1.5 kHz) versus high (1.5-4 kHz) fre-
quency energy content of long term noises. The diversity of noise
energy content suggests that a single noise model would not be
capable of addressing changing noise conditions for a subsequent
speech task.

Short term acoustic environmental conditions occurring within
long term conditions include TS- turn signal noise, WB- wiper
blade noise, TN- tone noise, IM- impulsive noise. These condi-
tions are expected to be present in conjunction with one of the
long-term noises.

As shown in Fig. 3, a hybrid method of T2-BIC segmenta-
tion and GMM classification followed by a decision smoothing is
used to detect, classify and track long-term noises. T2-BIC uses
Hotelling’s T 2-Statistic to pre-rank potential acoustic break points
which are evaluated using a Bayesian Information Criterion [4].

T²-BIC SEGMENTATION
with low penalty

TEAGER ENERGY OPERATOR
impulsive noise,tone noise,etc.

PERIODIC GMM CLASSIFICATION
within each segment

DECISION SMOOTHING
language model - Viterbi decoder - pruning

AUDIO STREAM
s(n)

NOISE KNOWLEDGE
I(n)

f(s(n))

Environmental Sniffing

Fig. 3. Flow diagram for Environmental Noise Sniffing.

As Fig. 3 shows, the incoming audio stream is first segmented
into acoustically homogeneous speech blocks using our T2-BIC
segmentation scheme with a low false alarm penalty (i.e. false
alarms are tolerable to ensure we capture all potential marks, both
true and false). Within each segment, GMM classification runs pe-
riodically to classify each non-overlapping T -frame-length block.



Decision smoothing is applied to the resulting decision sequence
of each segment. This process is similar to Language Modeling,
considering the fact that some noise transitions are not possible
although they may appear at the output of the GMM classifier.
Transition probabilities are generated from training data using bi-
gram language modeling with a noise type for each 15-frame word
block. Calculated transition probabilities are shown in Fig. 4.
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Fig. 4. Noise Language Modeling.

We use Viterbi decoding to find the most likely decision se-
quence given the classification probability list of each decision re-
gion within the segment. Each noise class has an initial probabil-
ity which is proportional to the number of occurrences within the
N -best position at the classifier output along the segment. Noise
classes whose number of occurrences within the N -best position
is less than a threshold are pruned during decision smoothing. We
can formulate this as follows:

�1n1 + �2n2 + : : :+ (�)NnN � 
 (1)

where ni is the occurrence number in the ith position in the score
list, �i is the corresponding weight coefficient and 
 is the thresh-
old.

Since our Environmental Sniffing framework is not a speech
system itself and works with other speech systems, noise knowl-
edge detection performance for each noise type (Pi) should be
weighted by a coefficient which is determined by the importance
that noise type plays in the speech application with Environmental
Sniffing (i.e., if noise impacts the speech task performance signif-
icantly, impact coefficient I is set high). For in-vehicle ASR, these
coefficients (I1; I2; : : : ; In) will reflect the impact each noise type
has on WER. We can formulate this as follows:

Critical performance rate
4

=

nX

i=1

IiPi

nX

i=1

Ii = 1 (2)

With this performance rate measure, the potential output score can
range from 0-100 if Pi is a classification rate, or 0-1 if Pi is a
probability.

4. EVALUATIONS
We evaluate the performance of our framework using an in-vehicle
noise database of 3 hours collected in 6 experimental runs using
the same route and the same vehicle on different days and hours.
A microphone array and 8-channel digital recorder previously used
for CU-Move in-vehicle speech data collection were employed [3].
The database does not contain speech. Fifteen noise classes are
transcribed during the data collection by a transcriber sitting in
the car. The time tags are generated instantly by the transcriber.
After data collection, some noise conditions are grouped together,
resulting in 8 acoustically distinguishable noise classes as listed in
Sec. 3. For each noise class, a 4-mixture GMM is trained using
2.5 hours of data. We use 12 dimensional MFCC feature vectors

during our evaluations. In both training and test data, half of the
time, long-term and short-term noise conditions are approximately
equally balanced across time.

4.1. Long Term Noise
First, we test long-term noise classification error performance by
running the classifier periodically with a period of 15 frames with-
out segmenting the test data. Fig. 5 shows noise classification error
performance by selecting the most likely model (solid bar to left in
each pair) [avg. 34.73% error], and using the two highest probable
models (cross-hatch bar to right in each pair) [avg. 13.23% error].
Some noise types (N4-highway driving, windows closed) are sig-
nificantly affected by selecting the top two models out of 8 in the
noise space.
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Fig. 5. Classification error performance of having the correct noise
type in the first position (1st bar in each set) and first two positions
(2nd bar in each set).

In our ”Classical classification algorithm” for noise, a segment
of data is scored once. As shown in Fig. 3, our ”Hybrid Algorithm”
has periodical classifications within a segment and subsequently
smoothes the final decision sequence using the language model
and pruning.

Next, we segment the noise test data using T2-BIC with dif-
ferent false alarm penalties (� = f0:3; 0:4; 0:5; 0:6g). During deci-
sion smoothing in the hybrid algorithm, we use the values N = 2,
�1 = 0:7, �2 = 0:3, and pruning threshold 
 = 0:7. Fig. 6 shows
error rates for both methods. You can see that classical method is
worse than the hybrid algorithm in terms of classification perfor-
mance even if the hand label segmentation is provided.
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Fig. 6. Error performance of the classical method (1st bar in each
set) and the hybrid algorithm (2nd bar in each set) with hand label
segmentation, and a range of lambda values for T2-BIC segmen-
tation.

To calculate the overall performance using Eqn. 2, we ran
speech recognition tests using CSLR’s Large Vocabulary Continu-
ous Speech Recognizer SONIC [5] on the TI-DIGITS database af-



Degrading
noise

N01 N02 N03 N04 N05 N06 N07

WER 1.1% 2.3% 2.7% 4.1% 8.1% 8.5% 3.7%
I-measure 0.04 0.08 0.09 0.13 0.27 0.28 0.11

Table 1. Speech Recognition Tests.

ter degrading the clean speech with our noise types at 10 dB SNR.
Models trained from clean speech were used for testing. WER re-
sults are shown in Table 1 as well as the impact I-measures of each
noise type.

Ii’s are assigned proportionally to WER’s and they sum to
one. Using Eqn. 2 with these values, we found the critical per-
formance rate to be 65:41% for the classical classification method
and 69:61% for the hybrid algorithm using 0:3 as the penalty pa-
rameter for T 2-BIC.

4.2. Discussion on Detecting Short Term Noise
We have the following assumptions about the human auditory sys-
tem: hearing is the process of detecting energy at a particular fre-
quency and the human auditory system is assumed to be a filtering
process which partitions the entire audible frequency range into
many critical bands. These assumptions provide motivation for
use of the Teager Energy Operator (TEO) [6], to detect impulsive
noise, tone noise and periodic noise observed in the in-vehicle en-
vironment since they appear as sudden energy changes and occupy
a certain frequency band. What distinguishes these energy changes
from those appearing during speech is that they do not have an ob-
served modulation scheme like speech. Using this knowledge, we
can automatically detect short-term noises within noisy-speech.
Fig. 7 gives an idea of how TEO processing works for turn sig-
nal which occupies narrow time slots and a wide frequency band.
The last figure (Fig. 7-c) clearly shows detection locations where
turn signal noise is present.

W a v e f o rm

-1000
-500

0
500

1000

S u b b a n d  7

-50

0

50

0
0.5

1
1.5

2
T E O

0.625 1.8751.25 2.5 3.125

0.7125 sec

(840-1160 Hz)

(a)

(b)

(c)

Fig. 7. Applying TEO processing to the environmental condition
where the turn signal is on and the long-term noise is city driving
with traffic, windows closed (N3).

5. DISCUSSION
The main goal of Environmental Sniffing is to extract knowledge
about environmental noise that exists within continuous speech.
As a first step towards this goal, in our evaluations, we focused
on extracting knowledge about the acoustic environmental noise
using a noise-only audio database. However, while constructing
the framework, we provide sufficient flexibility to easily move to-
wards a subsequent step and to allow the same framework to be
used for noisy-speech sections in audio streams as well. We are

presently working on a broad class monophone recognition based
framework to extract environmental noise knowledge from an au-
dio stream consisting of both noisy-silence and noisy-speech (e.g.,
similar to our speech activity detection [SAD] work previously
reported [7]). After defining a set of broad phone classes (e.g.
nasals, unvoiced fricatives, voiced fricatives, etc.), we can gen-
erate monophone model sets where each corresponds to a noise
type by degrading the clean monophone models with noise. In ad-
dition to these models, a silence model will also be included for
each noise type. If we use 10 broad class monophones, we will
have 10 clean monophone models, 10xN noisy monophone mod-
els, 1 clean silence model and N noisy-silence models, for a total
of (N + 1)x11 models. Due to the pruning method used in the
existing framework, the increase in search space will be less than
a linear increase when we have more noise types. It will also be
straightforward to use language modeling to calculate the transi-
tion probabilities from one monophone model set to another.

Another important issue is handling new in-coming noises
within the framework, in other words, adapting Environmental
Sniffing to new environmental noise types. Since there is a garbage
noise model (N0) within the existing framework, we can keep track
of the data classified as N0 and cluster to check if there is a suf-
ficient data cluster to train a new additional noise model. We can
also use the previous classification results to check how much the
new model differs from existing ones by comparing the score dis-
tribution of the new model with existing ones.

6. CONCLUSION
In this paper, we have addressed the problem of changing acous-
tic environmental conditions in speech tasks. We proposed a new
framework entitled Environmental Sniffing to detect, classify and,
track changing acoustic environmental conditions and extract knowl-
edge about the environmental noise. After proposing a general
framework, we specialized the sniffer to an in-vehicle speech ap-
plication. Novel aspects included a number of knowledge based
processing steps such as T2-BIC segmentation, noise language
modeling, GMM classification and TEO processing. We believe
such processing will provide significant knowledge to subsequent
speech processing tasks and thereby increase robust speech perfor-
mance.
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Abstract

In this paper, we considerthe problemof robust digit recog-
nition in real car environments. We chooseto utilize newly-
collectedCU-Move database[2]. We addressthe problemus-
ing two integratedapproaches . First, we consider arraypro-
cessing,enhancementandnoiseadaptationtechniquesasanin-
tegratedsolution. This approachreducedthe word error rate
(WER)38.6%andincreasedword accuracy (WAC) 47.1%,rel-
ative to baselineresults. Secondly, we usearray processing,
enhancement,cepstralmeannormalization,vocal tract length
normalizationandMLLR adaptationasanalternative solution.
The net gain obtainedwith this solutionis 55.4%reductionin
WER and64.3%increasein WAC, relative to baselineresults.
The first approachhasthe advantageof speedsinceall opera-
tionscanbeperformedin real-time,while thesecondapproach
maintainshigh accuracy at thecostof increasedcomputational
requirements.

1. Introduction
The problemof robust speechrecognitionin car environments
hasattractedmuchattention,sincecommandandcontrol,num-
ber dialing andnavigation throughinteractive systemapplica-
tionsareof fundemantal importance.For hands-freecell phone
useor in-vehiclecarnavigation,it is crucialto minimizedriver’s
taskstressso that appropriatecognitive function remainswith
operatingthe vehicle. Moreover, hands-freenaturalvoice in-
teractionwith the vehicleoffers the prospects of reduceddis-
traction. Theseapplicationsmake high performancerobust
speechrecognition in the car a necessity. However, speech
recognitionin carenvironmentsis fragile with word errorrates
(WERs)rangingfrom 20-60%depending on the roadandve-
hicle conditions[2]. Several approachesto speechrecognition
in car includescombinationof basicHMM recognizerswith
front-endnoisesupression,modeladaptationto noiseaswell as
speaker andmulti-channel concepts.Many earlyapproachesto
speechrecognitionin car focusedon isolatedcommands[4].
Other studieshave shown improvementin computational re-
quirementswith front-endsignal-subspace enhancement, with
increasesin recognitionratesdepending on the driving condi-
tions [5], Anotherstudy[6] consideredexperimentson recog-
nizer mismatchbetweentraining and testingusing cleandata
andaddedcar noise. This paperinvestigatesthe applicability
and integrity of aforementionedtechniques in a realisticenvi-
ronment,with thegoalof still beingcloseto processing in real-
time.

The paperis organizedas follows. In the next section,we
describethedatabasefollowedby thebaselinerecognition sys-

This work was supportedby DARPA through SPAWAR under
GrantNo.N66001-8906.

temdetails.Section4 considerstheproblemof arrayprocessing
anddescribestwo techniques. Section5 is on front-endspeech
enhancementand its effect on recognitionaccuracy, the next
sectionis devoted to noiseadaptationtechniqueswith special
attentionto Jacobianadaptation. Speakeradaptationtechniques
areconsiderednext. After takingcomputationalissuesinto ac-
countin section8, weconclude thepaperwith adiscussionand
giving futureresearch.

2. CU-Move Database

The CU-Move project[3] aimsto invent anddevelop car nav-
igation systemsthat arereliableandemploy a mixed-initiative
dialog. This requiresreliablespeechrecognitionacrosschang-
ing acousticconditions. Thereare5 partsin thedatabase;com-
mandandcontrolwords,digit stringsbeingmostlyphonenum-
bers,streetnameswith mostlyspellings,phonetically balanced
sentencesand Wizard of Oz interactive navigation conversa-
tions. A total of 500 speakers producedover 600GB of data
during thesix monthcollectioneffort acrosstheUnitedStates.
Thedatabaseandnoiseconditionsareanalyzed in detail in [2].
We point out that the noiseconditionsarechanging with time
andarequite differentin termsof SNR,stationarityandspec-
tral structure. The challengein addressingthesenoisecondi-
tions is that they might be changing depending on the car be-
ing usedandthe road. In this study, we usethe digits portion
thatcontainsapproximately40 words. In orderto evaluate the
noiselevel of eachfile, we utilize NIST’s segmentalSNRtool
[12], which usesthe audiofile aswell asvoice activity detec-
tion file to determineanapproximatenoiselevel for thefile. In
Fig. 1, wepresentthevariationof segmentalSNRover time for
onespeaker from thedigits portion(this portionof datacollec-
tion includesrecordings with windows openvaryingamounts).
Thisfigurerevealsthetimevaryingnatureof speechinteraction
within the car and shows the difficulty of the problem. Even
for a single speaker, segmentalSNR can change by as much
as15 dB depending on the vehicle type, operatingconditions
(i.e. turn signalon, windows’ positions,speech,wiper blades
etc.) androadconditions.While this is a challengingtask,it is
somewhat matchedsinceit is possibleto collectspeechfor in-
vehiclenavigationdialogsacrossmany possibleroadanddriv-
ing conditions,even thoughthe number of combinationscan
bequitelarge.ThemeansegmentalSNRwasapproximately10
dB for bothtrain andtestsets,againsuggestingthat thetaskis
matchedat leastin termsof meansegmentalSNR,thoughnoise
spectralcontourscanvary significantly.

3. Baseline recognition system

Althoughfor asmallvacabularysuchasthe40-word digit task,
it would be moreappropriate to usea whole-word basedsys-
tem, we chooseto usea sub-word basedsystemto be able to
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Figure1: Variation of segmental SNR with time for a speaker

generalizeour resultsto taskssuchasnavigationdialogsusing
otherpartsof the databasesuchasphonetically balancedsen-
tences,streetnamesor navigation dialog. Therefore,we use
theSoniccontinuousspeechrecognizer[1] beingdevelopedat
CSLR for a numberof recognitiontasks. The recognizer is
basedon across-word continuousdenstiyHMM usingacoustic
modelsthat employ decision-treestateclusteredHMMs with
associatedGammadensitiesfor durationdistributions.Thede-
coderimplementsa two-passtokenpassingapproachto conin-
uousspeechrecognition[1].

A total of 60 speakersbalancedacrossgenderandage(18-
70 yrs. old) were usedin the training set. However, before
training, it wasfirst necessaryto performforcedalignmenton
theentiretrainingcorpususingSonic’s alignmenttool [1]. We
checked severalalignmentsvisuallyby hand.Althoughthedata
wasvery noisy, thealignmentswerein perfectagreement with
what a humantrancriberwould produce. The 39 dimensional
featureset contains12 MFCCs, deltasand delta deltasalong
with c0, deltaanddeltadeltaenergy. Thereasonfor extracting
c0 in placeof energy wasto beableto usemodeladaptational-
gorithmsthatrequireaconversionbackto thelinearspectraldo-
main.Thetestsetalsocontaineda balancedgenderandageset
of 50 speakers.TheHMMs weretrainedusingSonicdecision-
treeHMM trainerresultingin 444models.All HMMs haveleft-
to-right topologywith no skipsandeachstatewasrepresented
by 6-24mixturesdependingon theavailabletrainingdata.The
vocabulary size was 40 including silence(SIL) and unkown
word (UNK). The dictionary is very convenient for telephone
dialing applicationssinceit containsmostnecessarywordslike
“dash”, “pound”, “sign” in addition to numbers.Under these
conditions,thebaselineresultsfor therecognizer is givenin Ta-
ble1. Theresultsaregoodif weconsiderthevaryingnoiselevel

Table1: Baseline recognition results.
Type Score(%) Rel. Imp.(%)
WAC 91.3 0.0
WER 10.1 0.0

of thespeech.Thesevariationsaremostlydueto varying win-
dow positionandspeedsoccuredduringspeechdatacollection.
To seethecorrelationof theWAC with segmentalSNR,wepro-
ducedthescatterplot in Fig. 2, which shows somecorrelation
with the SNR.We might, therefore,expectsomeimprovement
usingnoiseadaptationtechniques, but it seemsthat theperfor-
mancemight betterimprove if we areableto employ speaker
adaptationtechniques as well, sincethere is a wide rangeof
WAC at similarsegSNRlevels.
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Figure2: Variation of the WAC with segSNR for the test set
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Figure3: Adaptive array processing

4. Array Processing
In the formulation of the CU-Move Corpus,an array of five
microphoneswasdesignedandconstructedto allow arraypro-
cessingtechniquesto improveSNRandhencerecognitionaccu-
racy. In this section,weconsidertwo arraytechniquesandgive
recognitionresultsfor delay-and-sum beamforming(DASB).
In DASB, the position of the speaker is assumedto be fixed
and for eachmicrophone, a sampledelay is computed. Each
microphone signalis steeredwith thecorresponding delayand
summedto yield an enhancedsignal. This approachhasthe
drawbackthatastheheadpositionof the speaker changes,the
delay termsmay not be optimal. Therefore,techniquesthat
adaptively adjustthe delay termsmay yield betterresults. In
Table2, we presentthe recognition resultswith the front-end
DASB scheme.Therelativeimprovement in accuracy is 20.7%,
which implies that betterresultscould be obtainedby improv-
ing the designof the arrayprocessing technique. Sinceevery

Table2: Recognition results after DASB.
Type Score(%) Rel. Imp.(%)
WAC 93.1 20.7
WER 8.2 18.8

drivermoveshis/herheadduringdriving, anadaptivearraypro-
cessing(AAP) approach thatdetectsthemovementsandadjusts
thetime delaysaccordingly andautomaticallyis useful.There-
fore, tracking speaker’s headmovementwill increasethe ac-
curacy of the arrayprocessing.The proposed AAP algorithm
is summarizedin Fig. 3. In this algorithm,we choose micro-
phone1 asthe primary microphone,andbuild an adaptive fil-
ter betweenit andeachof the other four microphones. Next,
we sum and scaleall the steeredmicrophone outputs to pro-
vide an enhanced signal(d[n]). An additionalprocessingfea-
ture for the adaptive algorithmis the noisecancellershown in
Fig. 3. We againsumthe outputsin adjacentpairsto provide
threenoisereferencesignals.Thesesignalsareusedasinputs
to a three-channel adaptive noisecanceller, theoutputof which



is substractedfrom the output of AAP to yield the enhanced
output. To evaluatethe AAP system,we selectedten speak-
ersfrom theCU-Move databasethatwerebalancedacrossgen-
derandage.Eachspeaker wasprocessedusingthedelay-and-
sumbeamformer(DASB),adaptivearrayprocessor(AAP), and
adaptive arrayprocessorplus noisecanceller(AAP+NC). The
segSNRtool [12] wasagainusedto evaluatenoisesuppression
performance. Table3 shows averageimprovements compared
to unprocessedcenterchannel 3 for tenspeakers.

Table3: SegSNR improvements of array processing methods.
Method DASB AAP AAP+NC

Ave. imp. [dB] -0.045 1.01 2.05

5. Front-End Speech Enhancement
Sincetherecognitionproblemis relatedto time-varyingnoise,
applyinga fastenhancementtechniquebeforerecognition may
bebeneficialin two ways.First, it canreducethemismatchbe-
tweentrain andtestdata.Second,andmoreimportantly, it can
reducethevariancebetweendifferentnoiseconditionsandhelp
increasetheefficiency of thenoiseadaptationalgorithmsto be
discussedin the next section.As a fastandeffective enhance-
mentalgorithm,we chooseto useMMSE [9]. A listenerevalu-
ationof theenhancedfileswasconductedto assesstheeffectof
theenhancement.Subjectiveresultsshowedtheenhancementto
be very effective in termsof reducingthe perceptionof noise.
Thefront-endenhancementmethodwasusedfor a recognition
test of CU-Move data,with noiseestimatedfrom the silence
portion of the files (generallythe first 300 msec.).The results
presentedin Table4 shows that the front-endenhancement is
also effective in reducingthe WER by 25.8% relative to the
baselinerecognitionsystem.

Table4: MMSE enhancement results after DASB
Type Score(%) Rel. Imp.(%)
WAC 94.2 33.3
WER 7.5 25.8

6. Noise Adaptation
Anotherapproach to improve recognitionperformancein noisy
conditionsis to usenoiseadaptationtechniques[10, 8]. Among
many approachesproposed,we find JacobainAdaptation(JA)
particularly useful and suitablefor this application. Parallel
Model Combination(PMC) requiresinitial clean modelsand
then, using a portion of noise only data, successfully adapts
the modelsto the noisy conditions. However, in our case,we
do not have accessto cleanmodels.JA, on theotherhand,as-
sumesnoisymodelstrainedin oneconditionandadaptsmodels
to a target condition using a sampleof the target noisedata.
Moreover, adaptationis very fast;therefore,JA is suggestedas
a promisingapproachto theproblemof robustspeechrecogni-
tion in thecar.

6.1. Jacobian Adaptation

Jacobianadaptationassumesthat acousticmodelsarenonlin-
earfunctionsof speechandadditive noise,thena changein the
noiseconditionswill affect the modelsin a nonlinear fashion.
We assumethatwe have two noiseconditions, namelya refer-
encenoisein which the currentacousticmodelsweretrained,
and, target noisecontainedwithin the incomingcontaminated

speech.An importantconditionis thatthespectralchangein the
noisecondition shouldbesmallsothatthenoisyspeechmodel
statisticsstaywithin thelinearrangeof theJacobainadaptation.
We canbriefly explain Jacobianadaptationasfollows. Assume
we have a vectorY which is ananalyticfunctionof X. A small
change��� in X causesa smallchange�
	 in Y. This change
canbeexpressedasin Eqn. (1).

��	��
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� (1)

A similar equationcanbewritten for thecepstrumof thenoisy
speechin thereferencenoiseasEqn.(2),
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The term with partial derivatives is the Jacobianthat can be
computedin advance andstoredto beusedduringmodeladap-
tation.TheJacobiancanbeexpressedin termsof linearspectra
asin Eqn.(3),
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whereF is the inversediscretecosinetransformmatrix,
� �

is
the referencenoisespectrumand

 %! �&�
is the noisy speech

spectrumcontaminatedby thereferencenoise.Threeoperations
arerequiredduringtheadaptation;(1)collectingnoisestatistics,
(2)multiplying the differencebetweenthe referenceandtarget
noisestatisticsto obtainthebiasterm,and(3) addingthis bias
termto thenoisycepstrum(in thereferencenoise)to obtainthe
noisyspeechcepstrumin thetargetnoiseasin Eqn.(4),
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Therefore,weonly needa matrix-vectormultiplicationto com-
pute the bias and add this bias to the existing acousticmod-
els to obtain the adaptedmodels. This limited computational
requirementmakesthis techniqueviable for real-timeapplica-
tions. However, applicibility of the JA is also limited for this
task.Becauseit requirestrainingin onenoisecondition,which
doesnot hold in our casesincethetrainingdatacontainsmany
different noise types and levels. This causesdegradation in
theperformancebut still givesa goodamountof improvement
in comparison with no adaptationcase. An ideal application
would be to train acousticmodelsin idle noiseconditions and
thentestagainstmany differentnoiseconditions.Thiswill yield
muchbetterresultssincethemodelsarenot aswide in compar-
ison with our casewhich includesa variety of noisetypesand
levels.

Table5: JA results after DASB and MMSE enhancement
Type Score(%) Rel. Imp.(%)
WAC 95.4 47.1
WER 6.2 38.6

7. Speaker Adaptation
At thispoint,wehave reacheda level of performanceby apply-
ing threedistincttechniques,in acascadefashion, namelyarray
processing, enhancementandnoiseadaptation.However, aswe
saw in Fig. 2, the problemis alsorelatedto speaker variabil-
ity. To explorewhatimpactspeakeradaptationcanhavefor this
problem,wechoose to usetwo differentprocessingtechniques,



namelyvocaltractlengthnormalization(VTLN) andMaximum
LikelihoodLinearRegression(MLLR). Sincethesetechniques
donot requireaconversionbackto thelinearspectrum,wefirst
applycepstralmeannormalization(CMN) to limit any channel
effectsthatmaystemfrom datacollectionaswell asfrom array
processing.

7.1. Cepstral Mean Normalization

CMN is a well-known technique that is especiallyefficient for
removing long termchanneleffects.Wenormalized12MFCCs
with a meanover a 300-framebuffer(i.e. 360 ms) and then
computethe deltaanddeltadelta terms[1]. The resultsafter
DASB andenhacementaresummarizedin Table6. The abso-
lute gain,incomparison with no CMN case,is 1% in accuracy
and1.2%in WER.

Table6: CMN results after DASB and MMSE enhancement
Type Score(%) Rel. Imp.(%)
WAC 95.2 44.8
WER 6.3 37.6

7.2. Vocal Tract Length Normalization

Anothergoodapproach to reducingspeaker variability is vocal
tract lengthnormalization(VTLN)[11]. VLTN wasusedin a
cascademannerwith CMN andimprovedresultswereobtained
assummarizedin Table7. It is believedthattheresultswould

Table7: VTLN results after DASB, MMSEE and CMN
Type Score(%) Rel. Imp.(%)
WAC 96.0 54.0
WER 5.4 46.5

bebetterif wewereableto moreaccuratelydeterminethevocal
tractlengthof eachspeaker, however, inaccuriciesin determin-
ing this lengthreducestheoverall performance.In spiteof this,
thelevel of improvementis still considerable.

7.3. Maximum Likelihood Linear Regression

MLLR [13] was originally proposed for speaker adaptation,
however, if thespeechdatais noisythenit alsoadaptsto noise,
and is thereforea goodcandidate for combiningof noiseand
speaker adaptation.Our previoussimulationswith theDARPA
SPINEI&II tasks[7] alsosuggestedthatMLLR is anintegrated
wayof adaptingthemodelsto bothspeaker andnoisevariations.
Theresultsafter3 iterationsof MLLR arepresentedin Table8.

Table8: MLLR results after DASB, MMSE and CMN
Type Score(%) Rel. Imp.(%)
WAC 96.9 64.3
WER 4.5 55.4

Theimprovement is remarkable.However, therearesomeprob-
lemswith thecomputationalrequirements aswe discussin the
next section.

8. Computational Issues
Our ultimategoal is to be able to performspeechrecognition
in car environmentsin real-time. Therefore,in this section,
we summarizecomputation times requiredfor variousmeth-
ods utilized. In all of the simulations,we useda single pro-

cessormachinewith 512 MB of RAM anda 1.5 GHz proces-
sor speed. Table8 summarizesthesecomputation times. A

Table9: Computation times
Operation Real-time factor
Recognition 0.23

DASB 0.10
MMSE enhancement 0.10

JA 0.06
CMN 0.02
VTLN 0.58
MLLR 1.83

goodcombination in termsof computationtimeandaccuracy is
DASB+MMSEenhancement+JA requiringa realtime factorof
0.5.Thismeansthatwestill havehalf of thetimeto performad-
ditional processing.This time canbedevotedto moreeffective
arrayprocessingtechniquesandmaking the modeladaptation
moreaccurateandefficient.

9. Discussion and Research Directions
In this paper, we presentedour resultson thenewly introduced
CU-Move corpus. We applieda variety of techniques to the
problemof robust speechrecognitionin the car in a cascade
fashionto obtain improved results. Another concernwas to
beableto achieve speechrecognitionin real-time.We showed
thatwith fastadaptationtechniques, real-timeprocessingis vi-
able.As for futureresearchdirections,weareworking onmore
involved arrayprocessingtechniquesto obtainasmuchnoise
suppressionas possible. Another improvement could come
from incorporatingfastspeaker adaptationtechniquessuchas
SMLEM [14] into recognitiontogetherwith noiseadaptation.
Lastly, we areworking on moving to otherin-vehicletasksre-
quiring largervocabulariesthanthedigits portionto seetheap-
plicability andviability of large vocabulary continuous speech
recognitionin realcarenvironments.
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